本文是对网络表示学习/图学习(Network Representation Learning / Graph Learning)领域已读文献的归纳总结,长期更新。
朋友们,我们在github创建了一个图学习笔记库,总结了相关文章的论文、代码和我个人的中文笔记,能够帮助大家更加便捷地找到对应论文,欢迎star~
Chinese-Reading-Notes-of-Graph-Learning
更多文献阅读总结,见:
文献阅读总结合集
对应论文在网上都有免费版本可以下载,若个别朋友在网上找不到相应资源,请在评论区留言说明并备注邮箱等,看到后会尽快向您传递。
文献阅读(一)WWW2018-Continuous-Time Dynamic Network Embeddings
文献阅读(二)KDD2018-Embedding Temporal Network via Neighborhood Formation
文献阅读(七)ICLR2019-DyREP:Learing Representations over Dynamic Graphs
文献阅读(11)ICLR2020-Inductive representation learning on temporal graphs
文献阅读(14)ACM2018-Learning dynamic embeddings from temporal interactions
文献阅读(18)NIPS2019-Self-attention with Functional Time Representation Learning
文献阅读(19)KDD2019-Predicting Dynamic Embedding Trajectory in Temporal Interaction Networks
文献阅读(20)IJCAI2019-Node Embedding over Temporal Graphs
文献阅读(22)IJCAI2019-Spatio-Temporal Attentive RNN for Node Classification in Temporal Attributed Graph
文献阅读(25)AAAI2020-EvolveGCN:Evolving Graph Convolutional Networks for Dynamic Graph
文献阅读(27)WSDM2020-DySAT: Deep Neural Representation Learning on Dynamic Graphs via Self-Attention Networks
文献阅读(29)ICLR2020-Inductive and Unsupervised Representation Learning on Graph Structured Objects
文献阅读(38)ICLR2021-Inductive Representation Learning in Temporal Networks via Causal Anonymous Walks
文献阅读(46)CIKM2020-Continuous-Time Dynamic Graph Learning via Neural Interaction Processes
文献阅读(55)arXiv2021-Pre-Training on Dynamic Graph Neural Networks
文献阅读(71)WWW2022-CGC: Contrastive Graph Clustering for Community Detection and Tracking
文献阅读(72)WWW2022-TREND: TempoRal Event and Node Dynamics for Graph Representation Learning
文献阅读(74)KDD2022-ROLAND: Graph Learning Framework for Dynamic Graphs
文献阅读(75)ICML Workshop2020-ROLAND: Graph Learning Framework for Dynamic Graphs
文献阅读(四)ACL2017-CANE:Context-Aware Network Embedding for Relation Modeling
文献阅读(六)KDD2016-Asymmetric Transitivity Preserving Graph Embedding
文献阅读(八)KDD2018-Arbitrary-Order Proximity Preserved Network Embedding
文献阅读(九)KDD2014-DeepWalk:online learning of social representations
文献阅读(十)NIPS2017-Inductive representation learning on large graph
文献阅读(12)WWW2015-LINE:Large-scale Information Network Embedding
文献阅读(17)KDD2016-Structural Deep Network Embedding
文献阅读(24)KDD2020-GCC:Graph Contrastive Coding for Graph Neural Network Pre-Training
文献阅读(25)AAAI2020-EvolveGCN:Evolving Graph Convolutional Networks for Dynamic Graph
文献阅读(26)KDD2016-node2vec: Scalable Feature Learning for Networks
文献阅读(32)ACM TIST2017-PRIS:Profession Identification in Social Media
文献阅读(33)IJCAI2016-Max-Margin DeepWalk:Discriminative Learning of Network Representation
文献阅读(34)IJCAI2017-TransNet:Translation-Based NRL for Social Relation Extraction
文献阅读(35)TKDE2018-A Unified Framework for Community Detection and Network Representation Learning
文献阅读(36)WSDM2020-JNET: Learning User Representations via Joint Network Embedding and Topic Embedding
文献阅读(37)AAAI2021-Overcoming Catastrophic Forgetting in Graph Neural Networks with Experience Replay
文献阅读(40)ICLR2021-Combining Label Propagation and Simple Models Out-performs Graph Neural Networks
文献阅读(43)CIKM2017-Learning Community Embedding with Community Detection and Node Embedding on Graphs
文献阅读(44)ICLR2021-Accurate Learning of Graph Representations with Graph Multiset Pooling
文献阅读(45)AAAI2021-Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting
文献阅读(51)SIGIR2021-Self-supervised Graph Learning for Recommendation
文献阅读(52)ICLR2021-Learnable Embedding Sizes for Recommender Systems
文献阅读(53)AAAI2021-Adversarial Directed Graph Embedding
文献阅读(56)AAAI2021-Graph Game Embedding
文献阅读(57)ICML Workshop2020-Deep Graph Contrastive Representation Learning
文献阅读(58)The Web Conf Workshop2021-Towards Robust Graph Contrastive Learning
文献阅读(65)NIPS2021-Towards Open-World Feature Extrapolation-An Inductive Graph Learning Approach
文献阅读(66)AAAI2021-Deep Fusion Clustering Network
文献阅读(67)TheWebConf2021-Structural Deep Clustering Network
文献阅读(68)ACL2021-Dual Graph Convolutional Networks for Aspect-based Sentiment Analysis
文献阅读(69)NIPS2021-Do Transformers Really Perform Bad for Graph Representation
文献阅读(73)AAAI2022-SAIL: Self Augmented Graph Contrastive Learning
文献阅读(五)CCF201803网络表示学习专题
文献阅读(13)AAAI2017-A Survey on Network Embedding
文献阅读(16)ICLR2020-On The Equivalence between Node Embeddings and Structural graph representations
文献阅读(28)IFIP2020-Explain Graph Neural Networks to Understand Weight Graph Features
文献阅读(30)WWW2019-GraphVite: A High-Performance CPU-GPU Hybrid System for Node Embedding
文献阅读(39)ICLR2021-How to Find Your Friendly Neighborhood:Graph Attention Design with Self-supervision
文献阅读(62)清华博士论文2018-面向社会计算的网络表示学习