Pytorch_cnn_mnist

        加入我们要用两层卷积神经网络来提取特征对mnist数据集进行分类,在pytorch中,我们应该如何设计网络?最基本的卷机层与池化层怎么去搭配,如何计算?

目录

1.理论设计

2.利用工具进行计算

3.代码实现

4.参考资料


1.理论设计

        首先mnist数据集是28*28单通道的图片数据,这里卷积核的size一般可以试着调试,这里一般采用size=5,然后通道个数也就是我们的输出的特征图(feature map),一般也是尝试性的参数,可能看代码能更直观一点,有什么可以提问。

通过卷积层和池化层后输出大小怎么得出_GoGoingB的博客-CSDN博客_卷积层和池化层输出大小

​​​​​​​卷积核尺寸如何选取呢? - 那抹阳光1994 - 博客园

2.利用工具进行计算

# Convolutional neural network (two convolutional layers)
class ConvNet(nn.Module):
    def __init__(self, num_classes=10):
        super(ConvNet, self).__init__()
        self.layer1 = nn.Sequential(
            nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2),#一般Kernel_size=5,padding=2
            nn.BatchNorm2d(16),#make feature's mean_value=1,variance=1,learn or fit better from good distribution
            nn.ReLU(),#standard activation fuction for cnn
            nn.MaxPool2d(kernel_size=2, stride=2))#demension_reduce
        self.layer2 = nn.Sequential(
            nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2),
            nn.BatchNorm2d(32),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2))
        self.fc = nn.Linear(7*7*32, num_classes)
        
    def forward(self, x):
        out = self.layer1(x)
        out = self.layer2(out)
        out = out.reshape(out.size(0), -1)
        out = self.fc(out)
        return out

Pytorch_cnn_mnist_第1张图片  

Pytorch_cnn_mnist_第2张图片

Pytorch_cnn_mnist_第3张图片  

这是个可以把你的模型在线显示出关系的图https://netron.app/

一个在线卷积池化计算器-推荐不会计算的同学_老炉传说的专栏-CSDN博客_卷积计算器在线

                 self.fc = nn.Linear(7*7*32, num_classes)

        你看第二层卷机层的输出通道是32,然后计算出来的featuremap大小是7*7,我们通过flatten或者out.reshape(out.size(0), -1)来扁平化数据使得数据能输入给全连接层。

3.代码实现

import torch 
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms


# Device configuration
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

# Hyper parameters
num_epochs = 5
num_classes = 10
batch_size = 100
learning_rate = 0.001

# MNIST dataset
train_dataset = torchvision.datasets.MNIST(root='../../data/',
                                           train=True, 
                                           transform=transforms.ToTensor(),
                                           download=True)

test_dataset = torchvision.datasets.MNIST(root='../../data/',
                                          train=False, 
                                          transform=transforms.ToTensor())

# Data loader
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                           batch_size=batch_size, 
                                           shuffle=True)

test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                                          batch_size=batch_size, 
                                          shuffle=False)

# Convolutional neural network (two convolutional layers)
class ConvNet(nn.Module):
    def __init__(self, num_classes=10):
        super(ConvNet, self).__init__()
        self.layer1 = nn.Sequential(
            nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2),#一般Kernel_size=5,padding=2
            nn.BatchNorm2d(16),#make feature's mean_value=1,variance=1,learn or fit better from good distribution
            nn.ReLU(),#standard activation fuction for cnn
            nn.MaxPool2d(kernel_size=2, stride=2))#demension_reduce
        self.layer2 = nn.Sequential(
            nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2),
            nn.BatchNorm2d(32),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2))
        self.fc = nn.Linear(7*7*32, num_classes)
        
    def forward(self, x):
        out = self.layer1(x)
        out = self.layer2(out)
        out = out.reshape(out.size(0), -1)
        out = self.fc(out)
        return out

model = ConvNet(num_classes).to(device)

# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

# Train the model
total_step = len(train_loader)
for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader):
        images = images.to(device)
        labels = labels.to(device)
        
        # Forward pass
        outputs = model(images)
        loss = criterion(outputs, labels)
        
        # Backward and optimize
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        
        if (i+1) % 100 == 0:
            print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' 
                   .format(epoch+1, num_epochs, i+1, total_step, loss.item()))

# Test the model
model.eval()  # eval mode (batchnorm uses moving mean/variance instead of mini-batch mean/variance)
with torch.no_grad():
    correct = 0
    total = 0
    for images, labels in test_loader:
        images = images.to(device)
        labels = labels.to(device)
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

    print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))

# Save the model checkpoint
# torch.save(model.state_dict(), 'model.ckpt')
# torch.save(model.state_dict(), "my_model.pth")  # 只保存模型的参数
torch.save(model,"./my_model.pth")  # 保存整个模型

4.参考资料

pytorch-tutorial/main.py at master · yunjey/pytorch-tutorial · GitHub

PyTorch卷积神经网络实例深度分析——以MNIST数据集为例_零度不知寒的博客-CSDN博客

你可能感兴趣的:(#,深度学习Pytorch框架,pytorch,cnn,深度学习)