剪枝后的效果如何判断:将数据集一部分作为训练集,一部分作为验证集来检验剪枝后的效果。
1.当决策树达到预设的高度时就停止决策树的生长
2.达到某个节点的实例具有相同的特征向量,即使这些实例不属于同一类,也可以停止决策树的生长。
3.定义一个阈值,当达到某个节点的实例个数小于阈值时就可以停止决策树的生长。
4.通过计算每次扩张对系统性能的增益,决定是否停止决策树的生长。
上述不足:阈值属于超参数,很难找到过拟合–欠拟合的trade-off
三大准则
(1)树的高度是否超过阈值(10-15最合适)。
(2)结点的样本量是否小于阈值(太少容易过拟合)。
(3)划分前后验证集的精度是否提高。
预剪枝过程
生成决策树的过程中,在每个结点划分之前先进行计算,比较划分该结点前后决策树泛化性能是否提升,如果提升则划分该结点,如果不能提升则停止划分并将当前结点记为叶结点,其类别标记为该结点对应训练样例数最多的类别(好瓜or坏瓜)。
计算过程:(根蒂)
(1)不划分:将其标记为叶结点,类别标识为训练样例中最多的类别,即好瓜。则验证集中{4,5,8}被分类正确,得到验证集精度为
3/7100%=42.9%
(2)划分:如果划分,如图所示将三个结点进行标记。此时,验证集中编号为{4,5,8,11}的样例被划分正确,验证集精度为4/7100%=57.1%
(3)进行判断:划分前=42.9%<划分后=57.1%,所以预剪枝决策为:划分。
优缺点
优点
先从训练集生成一棵完整的决策树,然后自底向上地对非叶结点进行分析计算,若将该结点对应的子树替换为叶结点能带来决策树泛化性能提升,则将该子树替换为叶结点。
· 注:不能剪叶子结点,毫无意义
例子
连续属性取值数目非有限,不能像处理离散属性取值一样对结点直接进行划分,所以需要将连续属性离散化。
与离散属性不同,若当前结点划分属性为连续属性,该属性还可作为其后代结点的划分属性
常用的离散化方法是二分法
简单来说:
(1)将样本集中连续属性的取值从小到大排序;
(2)找到候选划分点(一般是中位点),将取值分为小于等于划分点的和大于划分点的;
(3)计算候选划分点的增益,选择增益最大的作为最终的划分点。
(1)先对属性“密度”的取值进行排序(从小到大)
{0.243,0.245,0.343,0.360,0.403,0.437,0.481,0.556,0.593,0.608,0.634,0.639,0.657,0.666,0.697,0.719,0.774}
(2)计算候选划分点(16个:每两个取值之间有一个划分点,共17个取值,所以会有16个划分点)
(3)一个个计算候选划分点的增益进行比较
# 创建预剪枝决策树
def createTreePrePruning(dataTrain, labelTrain, dataTest, labelTest, names, method='id3'):
"""
预剪枝 需要使用测试数据对每次的划分进行评估
策略说明:原本如果某节点划分前后的测试结果没有提升,将不进行划分(即执行剪枝),但考虑到这种策略容易造成欠拟合,
且不能排除后续划分有进一步提升的可能,因此,没有提升仍保留划分,即不剪枝
"""
trainData = np.asarray(dataTrain)
labelTrain = np.asarray(labelTrain)
testData = np.asarray(dataTest)
labelTest = np.asarray(labelTest)
names = np.asarray(names)
# 如果结果为单一结果
if len(set(labelTrain)) == 1:
return labelTrain[0]
# 如果没有待分类特征
elif trainData.size == 0:
return voteLabel(labelTrain)
# 其他情况则选取特征
bestFeat, bestEnt = bestFeature(dataTrain, labelTrain, method=method)
# 取特征名称
bestFeatName = names[bestFeat]
# 从特征名称列表删除已取得特征名称
names = np.delete(names, [bestFeat])
# 根据最优特征进行分割
dataTrainSet, labelTrainSet = splitFeatureData(dataTrain, labelTrain, bestFeat)
# 预剪枝评估
# 划分前的分类标签
labelTrainLabelPre = voteLabel(labelTrain)
labelTrainRatioPre = equalNums(labelTrain, labelTrainLabelPre) / labelTrain.size
# 划分后的精度计算
if dataTest is not None:
dataTestSet, labelTestSet = splitFeatureData(dataTest, labelTest, bestFeat)
# 划分前的测试标签正确比例
labelTestRatioPre = equalNums(labelTest, labelTrainLabelPre) / labelTest.size
# 划分后 每个特征值的分类标签正确的数量
labelTrainEqNumPost = 0
for val in labelTrainSet.keys():
labelTrainEqNumPost += equalNums(labelTestSet.get(val), voteLabel(labelTrainSet.get(val))) + 0.0
# 划分后 正确的比例
labelTestRatioPost = labelTrainEqNumPost / labelTest.size
# 如果没有评估数据 但划分前的精度等于最小值0.5 则继续划分
if dataTest is None and labelTrainRatioPre == 0.5:
decisionTree = {bestFeatName: {}}
for featValue in dataTrainSet.keys():
decisionTree[bestFeatName][featValue] = createTreePrePruning(dataTrainSet.get(featValue),
labelTrainSet.get(featValue)
, None, None, names, method)
elif dataTest is None:
return labelTrainLabelPre
# 如果划分后的精度相比划分前的精度下降, 则直接作为叶子节点返回
elif labelTestRatioPost < labelTestRatioPre:
return labelTrainLabelPre
else:
# 根据选取的特征名称创建树节点
decisionTree = {bestFeatName: {}}
# 对最优特征的每个特征值所分的数据子集进行计算
for featValue in dataTrainSet.keys():
decisionTree[bestFeatName][featValue] = createTreePrePruning(dataTrainSet.get(featValue),
labelTrainSet.get(featValue)
, dataTestSet.get(featValue),
labelTestSet.get(featValue)
, names, method)
return decisionTree
# 将数据集分割为测试集和训练集
xgDataTrain, xgLabelTrain, xgDataTest, xgLabelTest = splitXgData20(xgData, xgLabel)
# 生成不剪枝的树
xgTreeTrain = createTree(xgDataTrain, xgLabelTrain, xgName, method = 'id3')
# 生成预剪枝的树
xgTreePrePruning = createTreePrePruning(xgDataTrain, xgLabelTrain, xgDataTest, xgLabelTest, xgName, method = 'id3')
# 画剪枝前的树
print("剪枝前的树")
createPlot(xgTreeTrain)
# 画剪枝后的树
print("剪枝后的树")
createPlot(xgTreePrePruning)
# 创建决策树 带预划分标签
def createTreeWithLabel(data, labels, names, method='id3'):
data = np.asarray(data)
labels = np.asarray(labels)
names = np.asarray(names)
# 如果不划分的标签为
votedLabel = voteLabel(labels)
# 如果结果为单一结果
if len(set(labels)) == 1:
return votedLabel
# 如果没有待分类特征
elif data.size == 0:
return votedLabel
# 其他情况则选取特征
bestFeat, bestEnt = bestFeature(data, labels, method=method)
# 取特征名称
bestFeatName = names[bestFeat]
# 从特征名称列表删除已取得特征名称
names = np.delete(names, [bestFeat])
# 根据选取的特征名称创建树节点 划分前的标签votedPreDivisionLabel=_vpdl
decisionTree = {bestFeatName: {"_vpdl": votedLabel}}
# 根据最优特征进行分割
dataSet, labelSet = splitFeatureData(data, labels, bestFeat)
# 对最优特征的每个特征值所分的数据子集进行计算
for featValue in dataSet.keys():
decisionTree[bestFeatName][featValue] = createTreeWithLabel(dataSet.get(featValue), labelSet.get(featValue),
names, method)
return decisionTree
# 将带预划分标签的tree转化为常规的tree
def convertTree(labeledTree):
labeledTreeNew = labeledTree.copy()
nodeName = list(labeledTree.keys())[0]
labeledTreeNew[nodeName] = labeledTree[nodeName].copy()
for val in list(labeledTree[nodeName].keys()):
if val == "_vpdl":
labeledTreeNew[nodeName].pop(val)
elif type(labeledTree[nodeName][val]) == dict:
labeledTreeNew[nodeName][val] = convertTree(labeledTree[nodeName][val])
return labeledTreeNew
# 后剪枝 训练完成后决策节点进行替换评估 这里可以直接对xgTreeTrain进行操作
def treePostPruning(labeledTree, dataTest, labelTest, names):
newTree = labeledTree.copy()
dataTest = np.asarray(dataTest)
labelTest = np.asarray(labelTest)
names = np.asarray(names)
# 取决策节点的名称 即特征的名称
featName = list(labeledTree.keys())[0]
# print("\n当前节点:" + featName)
# 取特征的列
featCol = np.argwhere(names == featName)[0][0]
names = np.delete(names, [featCol])
# print("当前节点划分的数据维度:" + str(names))
# print("当前节点划分的数据:" )
# print(dataTest)
# print(labelTest)
# 该特征下所有值的字典
newTree[featName] = labeledTree[featName].copy()
featValueDict = newTree[featName]
featPreLabel = featValueDict.pop("_vpdl")
# print("当前节点预划分标签:" + featPreLabel)
# 是否为子树的标记
subTreeFlag = 0
# 分割测试数据 如果有数据 则进行测试或递归调用 np的array我不知道怎么判断是否None, 用is None是错的
dataFlag = 1 if sum(dataTest.shape) > 0 else 0
if dataFlag == 1:
# print("当前节点有划分数据!")
dataTestSet, labelTestSet = splitFeatureData(dataTest, labelTest, featCol)
for featValue in featValueDict.keys():
# print("当前节点属性 {0} 的子节点:{1}".format(featValue ,str(featValueDict[featValue])))
if dataFlag == 1 and type(featValueDict[featValue]) == dict:
subTreeFlag = 1
# 如果是子树则递归
newTree[featName][featValue] = treePostPruning(featValueDict[featValue], dataTestSet.get(featValue),
labelTestSet.get(featValue), names)
# 如果递归后为叶子 则后续进行评估
if type(featValueDict[featValue]) != dict:
subTreeFlag = 0
# 如果没有数据 则转换子树
if dataFlag == 0 and type(featValueDict[featValue]) == dict:
subTreeFlag = 1
# print("当前节点无划分数据!直接转换树:"+str(featValueDict[featValue]))
newTree[featName][featValue] = convertTree(featValueDict[featValue])
# print("转换结果:" + str(convertTree(featValueDict[featValue])))
# 如果全为叶子节点, 评估需要划分前的标签,这里思考两种方法,
# 一是,不改变原来的训练函数,评估时使用训练数据对划分前的节点标签重新打标
# 二是,改进训练函数,在训练的同时为每个节点增加划分前的标签,这样可以保证评估时只使用测试数据,避免再次使用大量的训练数据
# 这里考虑第二种方法 写新的函数 createTreeWithLabel,当然也可以修改createTree来添加参数实现
if subTreeFlag == 0:
ratioPreDivision = equalNums(labelTest, featPreLabel) / labelTest.size
equalNum = 0
for val in labelTestSet.keys():
equalNum += equalNums(labelTestSet[val], featValueDict[val])
ratioAfterDivision = equalNum / labelTest.size
# print("当前节点预划分标签的准确率:" + str(ratioPreDivision))
# print("当前节点划分后的准确率:" + str(ratioAfterDivision))
# 如果划分后的测试数据准确率低于划分前的,则划分无效,进行剪枝,即使节点等于预划分标签
# 注意这里取的是小于,如果有需要 也可以取 小于等于
if ratioAfterDivision < ratioPreDivision:
newTree = featPreLabel
return newTree
xgTreeBeforePostPruning = {"脐部": {"_vpdl": "是"
, '凹陷': {'色泽':{"_vpdl": "是", '青绿': '是', '乌黑': '是', '浅白': '否'}}
, '稍凹': {'根蒂':{"_vpdl": "是"
, '稍蜷': {'色泽': {"_vpdl": "是"
, '青绿': '是'
, '乌黑': {'纹理': {"_vpdl": "是"
, '稍糊': '是', '清晰': '否', '模糊': '是'}}
, '浅白': '是'}}
, '蜷缩': '否'
, '硬挺': '是'}}
, '平坦': '否'}}
xgTreePostPruning = treePostPruning(xgTreeBeforePostPruning, xgDataTest, xgLabelTest, xgName)
createPlot(convertTree(xgTreeBeforePostPruning))
createPlot(xgTreePostPruning)
`