HIve数仓新零售项目ODS层的构建

HIve数仓新零售项目

注:大家觉得博客好的话,别忘了点赞收藏呀,本人每周都会更新关于人工智能和大数据相关的内容,内容多为原创,Python Java Scala SQL 代码,CV NLP 推荐系统等,Spark Flink Kafka Hbase Hive Flume等等~写的都是纯干货,各种顶会的论文解读,一起进步。
今天继续和大家分享一下HIve数仓新零售项目
#博学谷IT学习技术支持


文章目录

  • HIve数仓新零售项目
  • 前言
  • 一、ODS层搭建--数据导入--全量覆盖
  • 二、ODS层搭建--数据导入--增量同步
  • 三、ODS层搭建--数据导入--新增和更新同步
  • 总结


前言

HIve数仓新零售项目ODS层的构建_第1张图片


这是一个线下真实HIve数仓的一个搭建项目,还是比较复杂的,主要和大家一起分享一下整个HIve数仓的思路。
整个项目分为:
1.ODS层
2.DWD层
3.DWB层
4.DWS层
5.DM层
6.RPT层
每一层都有每一层的知识点。我会和大家分享从数据源MySQL开始,如何搭建整个完整的项目。

一、ODS层搭建–数据导入–全量覆盖

不需要分区,每次同步都是先删后写,直接覆盖。

适用于数据不会有任何新增和变化的情况。

比如区域字典表、时间、性别等维度数据,不会变更或很少会有变更,可以只保留最新值。

这里以t_district区域字典表为例,进行讲解

DROP TABLE if exists yp_ods.t_district;
CREATE TABLE yp_ods.t_district
(
    `id` string COMMENT '主键ID',
    `code` string COMMENT '区域编码',
    `name` string COMMENT '区域名称',
    `pid`  int COMMENT '父级ID',
    `alias` string COMMENT '别名'
)
comment '区域字典表'
row format delimited fields terminated by '\t' 
stored as orc tblproperties ('orc.compress'='ZLIB');

sqoop数据同步
因为表采用了ORC格式存储,因此使用sqoop导入数据的时候需要使用HCatalog API

-- Sqoop导入之前可以先原表的数据进行清空
truncate table yp_ods.t_district;

方式1-使用1个maptask进行导入
sqoop import  \
--connect 'jdbc:mysql://192.168.88.80:3306/yipin?useUnicode=true&characterEncoding=UTF-8&autoReconnect=true' \
--username root \
--password 123456 \
--query "select * from t_district where \$CONDITIONS" \
--hcatalog-database yp_ods \
--hcatalog-table t_district \
--m 1

二、ODS层搭建–数据导入–增量同步

每天新增一个日期分区,同步并存储当天的新增数据。

比如登录日志表、访问日志表、交易记录表、商品评价表,订单评价表等。

这里以t_user_login登录日志表为例,进行讲解

DROP TABLE if exists yp_ods.t_user_login;
CREATE TABLE if not exists yp_ods.t_user_login(
   id string,
   login_user string,
   login_type string COMMENT '登录类型(登陆时使用)',
   client_id string COMMENT '推送标示id(登录、第三方登录、注册、支付回调、给用户推送消息时使用)',
   login_time string,
   login_ip string,
   logout_time string
) 
COMMENT '用户登录记录表'
partitioned by (dt string)
row format delimited fields terminated by '\t'
stored as orc tblproperties ('orc.compress' = 'ZLIB');

sqoop数据同步

  • 首次(全量)

1、不管什么模式,首次都是全量同步;再次循环同步的时候,可以自己通过where条件来控制同步数据的范围;

2、${TD_DATE}表示分区日期,正常来说应该是今天的前一天,因为正常情况下,都是过夜里12点,干前一天活,那么数据的分区字段应该属于前一天。

3、这里为了演示,${TD_DATE}先写死。

sqoop import "-Dorg.apache.sqoop.splitter.allow_text_splitter=true" \
--connect 'jdbc:mysql://192.168.88.80:3306/yipin?useUnicode=true&characterEncoding=UTF-8&autoReconnect=true' \
--username root \
--password 123456 \
--query "select *,'2022-11-18' as dt from t_user_login where  \$CONDITIONS" \
--hcatalog-database yp_ods \
--hcatalog-table t_user_login \
--m 1

  • 循环(增量同步)
#!/bin/bash
date -s '2022-11-20'  #模拟导入增量19号的数据

#你认为现在是2022-11-20,昨天是2022-11-19
TD_DATE=`date -d '1 days ago' "+%Y-%m-%d"`
/usr/bin/sqoop import "-Dorg.apache.sqoop.splitter.allow_text_splitter=true" \
--connect 'jdbc:mysql://192.168.88.80:3306/yipin?useUnicode=true&characterEncoding=UTF-8&autoReconnect=true' \
--username root \
--password 123456 \
--query "select *, '${TD_DATE}' as dt from t_user_login where 1=1 and (login_time between '${TD_DATE} 00:00:00' and 
'${TD_DATE} 23:59:59') and  \$CONDITIONS" \
--hcatalog-database yp_ods \
--hcatalog-table t_user_login \
-m 1

三、ODS层搭建–数据导入–新增和更新同步

每天新增一个日期分区,同步并存储当天的新增和更新数据。

适用于既有新增又有更新的数据,比如用户表、订单表、商品表等。

这里以t_store店铺表为例,进行讲解

drop table if exists yp_ods.t_store;
CREATE TABLE yp_ods.t_store
(
    `id`                 string COMMENT '主键',
    `user_id`            string,
    `store_avatar`       string COMMENT '店铺头像',
    `address_info`       string COMMENT '店铺详细地址',
    `name`               string COMMENT '店铺名称',
    `store_phone`        string COMMENT '联系电话',
    `province_id`        INT COMMENT '店铺所在省份ID',
    `city_id`            INT COMMENT '店铺所在城市ID',
    `area_id`            INT COMMENT '店铺所在县ID',
    `mb_title_img`       string COMMENT '手机店铺 页头背景图',
    `store_description` string COMMENT '店铺描述',
    `notice`             string COMMENT '店铺公告',
    `is_pay_bond`        TINYINT COMMENT '是否有交过保证金 1:是0:否',
    `trade_area_id`      string COMMENT '归属商圈ID',
    `delivery_method`    TINYINT COMMENT '配送方式  1 :自提 ;3 :自提加配送均可; 2 : 商家配送',
    `origin_price`       DECIMAL,
    `free_price`         DECIMAL,
    `store_type`         INT COMMENT '店铺类型 22天街网店 23实体店 24直营店铺 33会员专区店',
    `store_label`        string COMMENT '店铺logo',
    `search_key`         string COMMENT '店铺搜索关键字',
    `end_time`           string COMMENT '营业结束时间',
    `start_time`         string COMMENT '营业开始时间',
    `operating_status`   TINYINT COMMENT '营业状态  0 :未营业 ;1 :正在营业',
    `create_user`        string,
    `create_time`        string,
    `update_user`        string,
    `update_time`        string,
    `is_valid`           TINYINT COMMENT '0关闭,1开启,3店铺申请中',
    `state`              string COMMENT '可使用的支付类型:MONEY金钱支付;CASHCOUPON现金券支付',
    `idCard`             string COMMENT '身份证',
    `deposit_amount`     DECIMAL(11,2) COMMENT '商圈认购费用总额',
    `delivery_config_id` string COMMENT '配送配置表关联ID',
    `aip_user_id`        string COMMENT '通联支付标识ID',
    `search_name`        string COMMENT '模糊搜索名称字段:名称_+真实名称',
    `automatic_order`    TINYINT COMMENT '是否开启自动接单功能 1:是  0 :否',
    `is_primary`         TINYINT COMMENT '是否是总店 1: 是 2: 不是',
    `parent_store_id`    string COMMENT '父级店铺的id,只有当is_primary类型为2时有效'
)
comment '店铺表'
partitioned by (dt string) 
row format delimited fields terminated by '\t' 
stored as orc tblproperties ('orc.compress'='ZLIB');

sqoop数据同步
实现新增及更新同步的关键是,表中有两个跟时间相关的字段:

create_time 创建时间 一旦生成 不再修改

update_time 更新时间 数据变化时间修改

自己通过where条件来控制同步数据的范围。

  • 首次
sqoop import "-Dorg.apache.sqoop.splitter.allow_text_splitter=true" \
--connect 'jdbc:mysql://192.168.88.80:3306/yipin?useUnicode=true&characterEncoding=UTF-8&autoReconnect=true' \
--username root \
--password 123456 \
--query "select *,'2022-11-18' as dt  from t_store where 1=1 and \$CONDITIONS" \
--hcatalog-database yp_ods \
--hcatalog-table t_store \
-m 1
  • 循环
  #!/bin/bash
  date -s '2022-11-20'
  TD_DATE=`date -d '1 days ago' "+%Y-%m-%d"`
  /usr/bin/sqoop import "-Dorg.apache.sqoop.splitter.allow_text_splitter=true" \
  --connect 'jdbc:mysql://192.168.88.80:3306/yipin?useUnicode=true&characterEncoding=UTF-8&autoReconnect=true' \
  --username root \
  --password 123456 \
  --query "select *, '${TD_DATE}' as dt from t_store where 1=1 and ((create_time between '${TD_DATE} 00:00:00' and '${TD_DATE} 23:59:59') or (update_time between '${TD_DATE} 00:00:00' and '${TD_DATE} 23:59:59')) and  \$CONDITIONS" \
  --hcatalog-database yp_ods \
  --hcatalog-table t_store \
  -m 1

最终所有从MySql导入的的ODS层表格
HIve数仓新零售项目ODS层的构建_第2张图片


总结

这里介绍了HIve数仓新零售项目ODS层的构建,主要三种方式.

  1. 全量覆盖
  2. 增量同步
  3. 新增和更新同步

你可能感兴趣的:(Hive数仓实战项目,hive,零售,大数据)