yolov5 test.py BrokenPipeError: [Errno 32] Broken pipe问题解决

  • dataset.py
    batch_size = min(batch_size, len(dataset))
    nw = min([os.cpu_count() // world_size, batch_size if batch_size > 1 else 0, workers])  # number of workers
    sampler = torch.utils.data.distributed.DistributedSampler(dataset) if rank != -1 else None
    loader = torch.utils.data.DataLoader if image_weights else InfiniteDataLoader
    # Use torch.utils.data.DataLoader() if dataset.properties will update during training else InfiniteDataLoader()
    dataloader = loader(dataset,
                        batch_size=batch_size,
                        num_workers= nw,
                        sampler=sampler,
                        pin_memory=True,
                        collate_fn=LoadImagesAndLabels.collate_fn4 if quad else LoadImagesAndLabels.collate_fn)
    return dataloader, dataset
  • 解决办法
    loader函数中的num_workers参数设置为0

  • num_worker的作用
    1、每每轮到dataloader加载数据时:dataloader一次性创建num_worker个worker,(也可以说dataloader一次性创建num_worker个工作进程,worker也是普通的工作进程),并用batch_sampler将指定batch分配给指定worker,worker将它负责的batch加载进RAM。然后,dataloader从RAM中找本轮迭代要用的batch,如果找到了,就使用。如果没找到,就要num_worker个worker继续加载batch到内存,直到dataloader在RAM中找到目标batch。一般情况下都是能找到的,因为batch_sampler指定batch时当然优先指定本轮要用的batch。
    2、num_worker设置得大,好处是寻找batch速度快,因为下一轮迭代的batch很可能在上一轮/上上一轮…迭代时已经加载好了。坏处是内存开销大,也加重了CPU负担(worker加载数据到RAM的进程是CPU复制的嘛)。num_workers的经验设置值是自己电脑/服务器的CPU核心数,如果CPU很强、RAM也很充足,就可以设置得更大些。
    3、如果num_worker设为0,意味着每一轮迭代时,dataloader不再有自主加载数据到RAM这一步骤(因为没有worker了),而是在RAM中找batch,找不到时再加载相应的batch。缺点当然是速度更慢。

你可能感兴趣的:(图像处理,深度学习,Pytorch,深度学习,pytorch,神经网络)