- 毕业设计--基于Python+Django框架的豆瓣图书评论推荐可视化系统
源码空间站11
python课程设计django毕业设计人工智能后端豆瓣图书爬虫
1.系统概述本系统是一个基于Python和Django框架的豆瓣图书评论推荐可视化系统。通过收集并分析豆瓣图书的评论数据,结合可视化技术,系统能够为用户推荐感兴趣的图书,并以直观的方式展示图书评论的统计信息和分析结果。2.项目目标本项目的主要目标是设计并实现一个豆瓣图书评论推荐系统,具体目标如下:图书评论数据采集与存储:系统能够从豆瓣平台抓取图书评论数据,并将其存储在本地数据库中(db.sqlit
- 分布式Server:IDL_ssgrade
XLYcmy
分布式分布式c++网络安全CWindows课程设计操作系统
源程序:【免费】分布式Server:IDL-ssgrade资源-CSDN文库//Don'tmodifythisfileasitwillbeoverwritten.//#include"IDL_ssgrade.h"Grade::Grade(constGrade&IDL_s){name=IDL_s.name;ID=IDL_s.ID;score=IDL_s.score;}Grade&Grade::ope
- HarmonyOS 与 iOS:架构与优势的深度剖析
汪子熙
计算机基础知识harmonyosios架构华为
在现代操作系统的版图中,HarmonyOS和iOS都占据着重要地位。它们代表了两种不同的发展方向:前者以分布式架构和多终端融合为核心,后者则以精细化的用户体验和封闭的生态系统见长。以下将通过多个维度剖析它们的本质区别与各自的优势。技术架构的不同HarmonyOS是由华为开发的一款基于微内核设计的分布式操作系统,强调跨设备的无缝协同。其微内核架构使系统的模块更加轻量化,并支持多样化设备的集成,从智能
- 神经网络初始化 (init) 介绍
迷路爸爸180
神经网络人工智能深度学习初始化init
文章目录引言1.初始化的重要性1.1打破对称性1.2控制方差1.3加速收敛与提高泛化能力2.常见的初始化方法及其应用场景2.1Xavier/Glorot初始化2.2He初始化2.3正交初始化2.4其他初始化方法3.如何设置初始化4.基于BERT的文本分类如何进行初始化4.1项目背景4.2模型构建4.3模型训练与评估4.4结果分析结论参考资料引言在深度学习的世界中,构建一个高效且性能优异的神经网络模
- 使用 Hadoop 实现大数据的高效存储与查询
王子良.
经验分享大数据hadoop分布式
欢迎来到我的博客!非常高兴能在这里与您相遇。在这里,您不仅能获得有趣的技术分享,还能感受到轻松愉快的氛围。无论您是编程新手,还是资深开发者,都能在这里找到属于您的知识宝藏,学习和成长。博客内容包括:Java核心技术与微服务:涵盖Java基础、JVM、并发编程、Redis、Kafka、Spring等,帮助您全面掌握企业级开发技术。大数据技术:涵盖Hadoop(HDFS)、Hive、Spark、Fli
- 单体式架构,集群,分布式架构有什么区别
highfish920
java分布式java
单体式架构单体架构就是所有的代码都是放在一个项目上面的,并且部署在一个机器上面,他什么都做,自己完成所有的任务。但是当业务规模变得复杂以后,就会暴露他的缺点缺点:1.编译和启动的速度会变慢2.代码冲突3.单个数据库存储能力有限4.很难在进行扩展虽然有缺点,但是他肯定还是有自己的优点的优点1.开发测试简单部署方便2.扩容简单,给应用加机器就可以由于单体架构的缺点,逐渐出现了集群集群集群就是当单体架构
- WebClient和RestTemplate的差异
master_chenchengg
能力提升面试宝典技术IT信息化
WebClient和RestTemplate的差异引言RestTemplate的历史背景与适用场景WebClient的诞生背景及其优势编程模型对比错误处理机制的区别性能考量未来发展方向实际应用案例分享引言在当今互联网时代,服务间的通信是构建分布式系统不可或缺的一部分。Spring框架作为Java生态系统中最受欢迎的企业级开发框架之一,提供了多种工具来简化HTTP请求的处理。其中,WebClient
- Spark 源码分析(一) SparkRpc中序列化与反序列化Serializer的抽象类解读 (正在更新中~)别人能写出来的,你也能行!多学习别人的思路,形成自己的思路,高薪工作奔你而来!
小白的大数据历程
Spark源码解析开发语言spark大数据分布式scala
后一篇链接在这接上一章请先看解读序列化抽象类第一部分(这是一个链接)目录接上一章请先看解读序列化抽象类第一部分2.Java序列化实现类JavaSerializer(1)JavaSerializationStream类代码实际例子1:序列化(2)JavaDeserializationStream代码实际例子2:反序列化Spark源码下类图在学习过程中,抓住主要问题,请思考问题为什么Kryo序列化更加
- Spark 源码分析(一) SparkRpc中序列化与反序列化Serializer的抽象类解读 (java序列化部分完结,正在更新RpcEnv部分~)
小白的大数据历程
Spark源码解析sparkjavapython
目录(3)JavaSerializerInstance定义了一个Java序列化实例(1)构造方法参数(2)方法1:serializeStream(3)方法2:deserializeStreamdefaultClassLoader(4)方法3:deserializeStreamloader(5)方法4:serialize(6)方法5:deserializeloader(7)方法6:deseriali
- 《守护数据隐私的堡垒:构建基于差分隐私的MySQL匿名化处理系统》
墨夶
数据库学习资料2mysqlandroid数据库
在大数据时代,个人隐私保护的重要性日益凸显。随着全球范围内对用户信息保护意识的增强以及相关法律法规(如GDPR、CCPA等)的出台,企业面临着前所未有的挑战——如何在利用海量数据创造价值的同时,确保这些数据不会泄露用户的敏感信息。为了应对这一难题,差分隐私(DifferentialPrivacy,DP)作为一种强大的数学工具应运而生。它不仅能够有效地抵御各种形式的重识别攻击,而且还可以保持数据集统
- 机器学习02-发展历史补充
坐吃山猪
机器学习机器学习人工智能
机器学习02-发展历史补充文章目录机器学习02-发展历史补充1-机器学习个人理解1-初始阶段:统计学习和模式识别(20世纪50年代至80年代)2-第二阶段【集成时代】+【核方法】(20世纪90年代至2000年代初期)3-第三阶段【特征工程】+【模型优化】(2000年代中期至2010年代初期)4-大规模数据和分布式计算(2010年代中后期)5-自动化机器学习和特征选择(2010年代末至今)2-神经网
- 单体架构、集群架构和分布式架构概述
JoyousHorse
软件工程架构分布式软考软件工程系统架构设计师
单体架构、集群架构和分布式架构概述在现代系统架构和开发过程中,单体架构、集群架构和分布式架构是三个常见且关键的概念。本文将详细介绍这些技术的相关概念,并探讨它们之间的联系与区别。一、单体架构单体架构,即单体技术,是一种软件设计模式,所有的功能和模块都集中在一个单一的应用程序中。比较常见的是学生时代开发的各类应用程序,应用包部署在一台服务器上,无需考虑系统性能、请求并发、服务连续性等问题。特点:单一
- R语言的并发编程
技术的探险家
包罗万象golang开发语言后端
R语言的并发编程引言在现代计算中,如何有效地利用计算资源进行数据处理和分析已成为一个重要的研究方向。尤其在大数据时代,数据量的急剧增加让单线程处理方式显得力不从心。为了解决这一问题,各种编程语言都开展了并发编程的研究和应用。R语言作为一种广泛应用于统计分析和数据科学的语言,也为并发编程提供了强大的支持。本文将介绍R语言的并发编程,包括其基本概念、常用包、应用示例以及实用技巧。一、并发编程基础并发编
- Pytorch 三小时极限入门教程
power-辰南
人工智能深度学习pytorch人工智能
一、引言在当今的人工智能领域,深度学习占据了举足轻重的地位。而Pytorch作为一款广受欢迎的深度学习框架,以其简洁、灵活的特性,吸引了大量开发者投身其中。无论是科研人员探索前沿的神经网络架构,还是工程师将深度学习技术落地到实际项目,Pytorch都提供了强大的支持。本教程将带你从零基础开始,一步步深入了解Pytorch的核心知识,助你顺利踏上深度学习的征程。二、Pytorch基础环境搭建安装An
- Python机器学习之XGBoost从入门到实战(基本理论说明)
雪域枫蓝
PythonAtificialIntelligence机器学习python分布式
Xgboost从基础到实战XGBoost:eXtremeGradientBoosting*应用机器学习领域的一个强有力的工具*GradientBootingMachines(GBM)的优化表现,快速有效—深盟分布式机器学习开源平台(DistributedmachinelearningCommunity,DMLC)的分支—DMLC也开源流行的深度学习库mxnet*GBM:Machine:机器学习模型
- (九)ROS运行管理
PaLu-LvL
ROS从入门到实践机器人c++ubuntu学习
前言1.ROS是多进程(节点)的分布式框架,一个完整的ROS系统实现:可能包含多台主机;每台主机上又有多个工作空间(workspace);每个的工作空间中又包含多个功能包(package);每个功能包又包含多个节点(Node),不同的节点都有自己的节点名称;每个节点可能还会设置一个或多个话题(topic)...2.在多级层深的ROS系统中,其实现与维护可能会出现一些问题,比如,如何关联不同的功能包
- 【YOLOv8杂草作物目标检测】
stsdddd
YOLO目标检测目标检测YOLO目标检测人工智能
YOLOv8杂草目标检测算法介绍模型和数据集下载算法介绍YOLOv8在禾本科杂草目标检测方面有显著的应用和效果。以下是一些关键信息的总结:农作物幼苗与杂草检测系统:基于YOLOv8深度学习框架,通过2822张图片训练了一个目标检测模型,用于检测田间的农作物幼苗与杂草对象。该系统支持图片、视频以及摄像头进行目标检测,并能保存检测结果。系统界面可实时显示目标位置、目标总数、置信度、用时等信息。YOLO
- Azure Synapse Dedicated SQL Pool通过配置选项和参数优化性能
weixin_30777913
云计算azure
配置选项与参数分布键(DistributionKey):•选择:在大数据量表中,选择经常用于JOIN、WHERE条件中的列作为分布键,如Date、ID等。•策略:对于范围查询,使用HASH分布避免数据倾斜;对于维度表,通常选择ROUND-ROBIN分布。索引:•类型:聚集列存储索引(CCI)针对大型数据扫描和聚合进行了优化。•策略:始终对大型事实表使用CCI,避免在大型表上使用传统的行存储索引。分
- 工业控制系统的8种类型
dotNET跨平台
工业控制系统(ICS)是指用于操作或自动化常见工业过程的任何设备、网络或系统及其相关仪表的统称。ICS几乎被所有工业领域和关键基础设施行业使用,包括但不限于能源、制造、运输和污水处理。工业控制系统有几种类型。它们在大小和复杂性上有所不同,并且是为不同的行业和不同的任务设计的。最常见的包括监督控制和数据采集(SCADA)系统、分布式控制系统(DCS)、可编程逻辑控制器(PLC)以及其他几种。继续阅读
- 深度学习(1)
浅忆へ梦微凉
深度学习人工智能深度学习学习方法python
一、torch的安装基于直接设备情况,选择合适的torch版本,有显卡的建议安装GPU版本,可以通过nvidia-smi命令来查看显卡驱动的版本,在官网中根据cuda版本,选择合适的版本号,下面是安装示例代码GPU:pipinstalltorch==2.5.0torchvision==0.20.0torchaudio==2.5.0--index-urlhttps://download.pytorc
- 深度学习常用格式转化脚本xml2yolo/coco2yolo/bdd2yolo/frame2video等
qq1309399183
计算机视觉实战项目集合深度学习人工智能格式转化脚本voc2yolo格式转化数据集格式转换xml2yolococo2yolo
文章目录1.**数据集格式转换脚本**`coco2yolo.py`示例注释:注释说明:`xml2yolo.py`示例注释:注释说明:2.**数据集可视化与统计**`vis_yolo_files.py`示例注释:注释说明:3.**其他工具脚本**`frames2video.py`示例注释:注释说明:该项目提供了一系列用于深度学习的数据处理工具,主要功能包括:数据集格式转换:提供多种脚本,将不同格式的
- LLMs,即大型语言模型
maopig
AI语言模型人工智能自然语言处理
LLMs,即大型语言模型,是一类基于深度学习的人工智能模型,它们通过海量的数据和大量的计算资源进行训练,可以理解和生成自然语言。LLMs的核心架构是Transformer,其关键在于自注意力机制,使得模型能够同时对输入的所有位置进行“关注”,从而更好地捕捉长距离的语义依赖关系。LLMs在众多领域都有广泛的应用,如自然语言理解(NLU),语言生成,以及语音识别和合成等。例如,它们能够理解人类的语言
- 【LLM】大语言模型(LLMs)
林九生
人工智能语言模型人工智能自然语言处理
大型语言模型(LLMs)1.什么是大型语言模型?大型语言模型(LargeLanguageModel,LLM)是基于深度学习的自然语言处理模型,能够理解和生成自然语言文本。它们通过在大规模文本数据上进行训练,学习语言的语法、语义和各种语言特征,从而可以执行诸如文本生成、翻译、总结、问答等多种语言任务。以下是大型语言模型的定义和基本原理:1.1定义大型语言模型是由大量参数组成的神经网络,这些参数通过在
- Flink 常见面试题
知否&知否
flink大数据kafka
1、Flink的四大特征(基石)checkpoint:基于Chandy-Lamport算法,实现了分布式一致性快照,提供了一致性的语义。State:丰富的StateAPI。ValueState,ListState,MapState,BroadcastState.Time:实现了Watemark机制,乱序数据处理,迟到数据容忍。Window:开箱即用的滚动、滑动、会话窗口。以及灵活的自定义窗口。2、
- 【Python】已解决:ModuleNotFoundError: No module named ‘sklearn‘
屿小夏
pythonsklearn人工智能
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- 如何快速在Windows 10 + Anaconda 3 中使用Mxnet及gluon
qianchess
mxnet使用mxnetwin10anacondagluon人工智能
如何快速在Windows10+Anaconda3中使用Mxnet及gluon网络上Mxnet的安装以及使用方法很多,自从其作者之一李沐推出了基于Mxnet的深度学习课程之后,我也尝试着去使用了一下Mxnet。首先第一步就是在自己的系统中安装Mxnet及其相关组建。现在的Mxnet常常会跟其虚拟环境Gluon结合在一起,所以下文就一起阐述一下,顺便记录一下自己踩的坑。注意本文的大部分内容都可以在官网
- 2.TIDB整体架构
胡晗-
tidb
与传统的单机数据库相比,TiDB具有以下优势:纯分布式架构,拥有良好的扩展性,支持弹性的扩缩容支持SQL,对外暴露MySQL的网络协议,并兼容大多数MySQL的语法,在大多数场景下可以直接替换MySQL默认支持高可用,在少数副本失效的情况下,数据库本身能够自动进行数据修复和故障转移,对业务透明支持ACID事务,对于一些有强一致需求的场景友好,例如:银行转账具有丰富的工具链生态,覆盖数据迁移、同步、
- 3D UNet和Swin-UNETR
学無芷境
计算机视觉
3DUNet和Swin-UNETR都是用于医学图像分析的深度学习网络,它们对三维(3D)数据进行特征提取和分割。3DUNet3DUNet是UNet架构的一个变体,专门设计用于处理三维医学图像数据。UNet最初是为二维(2D)图像分割任务设计的,具有典型的编码器-解码器结构。3DUNet扩展了这种架构,以便更好地处理具有深度信息的体积数据,如CT或MRI扫描。主要特点:编码器:逐渐下采样图像,提取并
- Git基本操作
宠物与不尤编程
git
Git是一个分布式版本控制系统,它可以追踪文件的变化,并记录文件的历史版本。以下是Git的基本概念和使用方式:仓库(Repository):Git仓库是存储代码和文件的地方,可以是本地仓库或远程仓库。本地仓库存储在本地计算机上,而远程仓库存储在远程服务器上。分支(Branch):分支是Git中的重要概念。在创建仓库时,会自动创建一个默认的主分支(通常是master)。除了主分支外,可以创建其他分支
- 推荐3D UNet实现:深度学习3D体素数据语义分割的利器!
滑辰煦Marc
推荐3DUNet实现:深度学习3D体素数据语义分割的利器!去发现同类优质开源项目:https://gitcode.com/在这个快速发展的深度学习时代,3DUNet已经成为3D图像处理领域中不可或缺的工具,尤其在医疗影像分析和3D物体识别等任务上展现出强大的潜力。这个开源项目为我们提供了一个高效、灵活的3DUNet实现,支持Tensorflow、PyTorch和Chainer三种主流深度学习框架。
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号