目录
线性关系
线性模型和非线性模型
利用线性回归解决非线性问题
多项式回归
线性模型
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
rnd=np.random.RandomState(40)#设置随机数种子
X = rnd.uniform(-3, 3, size=100) #random.uniform,从输入的任意两个整数中取出size个随机数
#生成y的思路:先使用NumPy中的函数生成一个sin函数图像,然后再人为添加噪音
y = np.sin(X) + rnd.normal(size=len(X)) / 3 #random.normal,生成size个服从正态分布的随机数
#使用散点图观察建立的数据集是什么样子
# plt.scatter(X, y,marker='o',c='k',s=20)
# plt.show()
X=X.reshape(-1,1)#将数据升到二维
#使用原始数据进行建模
LinearR = LinearRegression().fit(X, y)
TreeR = DecisionTreeRegressor(random_state=0).fit(X, y)
#放置画布
fig,ax1=plt.subplots(1)
#创建测试数据:一系列分布在横坐标上的点
line = np.linspace(-3, 3, 1000, endpoint=False).reshape(-1, 1)
#将测试数据代入predict接口,并绘制
ax1.plot(line,LinearR.predict(line),linewidth=2, color='green',label="linear regression")
ax1.plot(line, TreeR.predict(line), linewidth=2, color='red',label="decision tree")
#将原数据上的拟合绘制在图像上
ax1.plot(X[:, 0], y, 'o', c='k')
ax1.legend(loc="best")
ax1.set_ylabel("Regression output")
ax1.set_xlabel("Input feature")
ax1.set_title("Result before discretization")
plt.tight_layout()
plt.show()
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
from sklearn.preprocessing import KBinsDiscretizer #分箱
rnd=np.random.RandomState(40)#设置随机数种子
X = rnd.uniform(-3, 3, size=100) #random.uniform,从输入的任意两个整数中取出size个随机数
#生成y的思路:先使用NumPy中的函数生成一个sin函数图像,然后再人为添加噪音
y = np.sin(X) + rnd.normal(size=len(X)) / 3 #random.normal,生成size个服从正态分布的随机数
X = X.reshape(-1, 1)
line = np.linspace(-3, 3, 1000, endpoint=False).reshape(-1, 1)#测试集数据
#分箱操作
enc=KBinsDiscretizer(n_bins=10,#分几个箱子
encode='onehot',#采用哑变量方式做离散化
)
X_binned=enc.fit_transform(X)#之后返回一个稀疏矩阵(m,n_bins),m是样本数量,每一列是一个分好的类别
line_binned = enc.transform(line)
LinearR = LinearRegression().fit(X, y)
TreeR = DecisionTreeRegressor(random_state=0).fit(X, y)
#将两张图像绘制在一起,布置画布
fig, (ax1, ax2) = plt.subplots(ncols=2
, sharey=True #让两张图共享y轴上的刻度
, figsize=(10, 4))
#在图1中布置在原始数据上建模的结果
ax1.plot(line, LinearR.predict(line), linewidth=2, color='green',
label="linear regression")
ax1.plot(line, TreeR.predict(line), linewidth=2, color='red',
label="decision tree")
ax1.plot(X[:, 0], y, 'o', c='k')
ax1.legend(loc="best")
ax1.set_ylabel("Regression output")
ax1.set_xlabel("Input feature")
ax1.set_title("Result before discretization")
#使用分箱数据进行建模
LinearR_ = LinearRegression().fit(X_binned, y)
TreeR_ = DecisionTreeRegressor(random_state=0).fit(X_binned, y)
#进行预测,在图2中布置在分箱数据上进行预测的结果
ax2.plot(line #横坐标
, LinearR_.predict(line_binned) #分箱后的特征矩阵的结果
, linewidth=2
, color='green'
, linestyle='-'
, label='linear regression')
ax2.plot(line, TreeR_.predict(line_binned), linewidth=2, color='red',
linestyle=':', label='decision tree')
#绘制和箱宽一致的竖线,可有可无
ax2.vlines(enc.bin_edges_[0] #x轴
, *plt.gca().get_ylim() #y轴的上限和下限
, linewidth=1
, alpha=.2) #将原始数据分布放置在图像上
ax2.plot(X[:, 0], y, 'o', c='k')
ax2.legend(loc="best")
ax2.set_xlabel("Input feature")
ax2.set_title("Result after discretization")
plt.tight_layout()
plt.show()
一维的转换公式
二维转换公式
from sklearn.preprocessing import PolynomialFeatures
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
d=5#多项式维度
rnd=np.random.RandomState(40)#设置随机数种子
X = rnd.uniform(-3, 3, size=100) #random.uniform,从输入的任意两个整数中取出size个随机数
#生成y的思路:先使用NumPy中的函数生成一个sin函数图像,然后再人为添加噪音
y = np.sin(X) + rnd.normal(size=len(X)) / 3 #random.normal,生成size个服从正态分布的随机数
X = X.reshape(-1, 1)
line = np.linspace(-3, 3, 1000, endpoint=False).reshape(-1, 1)#测试集数据
line_=PolynomialFeatures(degree=d).fit_transform(line)
LinearR = LinearRegression().fit(X, y)
X_=PolynomialFeatures(degree=d).fit_transform(X)#对数据进行多项式处理
LinearR_=LinearRegression().fit(X_, y)
#放置画布
fig, ax1 = plt.subplots(1) #将测试数据带入predict接口,获得模型的拟合效果并进行绘制
#多项式处理前
ax1.plot(line, LinearR.predict(line), linewidth=2, color='green'
,label="linear regression")
#多项式处理后 训练时使用多项式数据,预测时也应采用多项式数据
ax1.plot(line, LinearR_.predict(line_), linewidth=2, color='red'
,label="Polynomial regression") #将原数据上的拟合绘制在图像上
ax1.plot(X[:, 0], y, 'o', c='k') #其他图形选项
ax1.legend(loc="best")
ax1.set_ylabel("Regression output")
ax1.set_xlabel("Input feature")
ax1.set_title("Linear Regression ordinary vs poly")
plt.tight_layout()
plt.show()
#随后可以试试看较低和较高的次方会发生什么变化