pytorch深度学习实战lesson14

第十四课 丢弃法(Dropout)

pytorch深度学习实战lesson14_第1张图片

目录

理论部分

实践部分

从零开始实现:

简洁实现:


理论部分

这节课很重要,因为沐神说这个丢弃法比上节课的权重衰退效果更好!

pytorch深度学习实战lesson14_第2张图片

pytorch深度学习实战lesson14_第3张图片

为什么期望没变?

pytorch深度学习实战lesson14_第4张图片

pytorch深度学习实战lesson14_第5张图片

如上图所示,使用dropout后,是将隐藏层的的某几个神经元变成零,然后没有变成0的神经元会相应增大以保证总的期望不变。当然保留和置零的神经元不是一定的。这个是训练才会使用,测试的时候不用。

pytorch深度学习实战lesson14_第6张图片

pytorch深度学习实战lesson14_第7张图片

实践部分

从零开始实现:

pytorch深度学习实战lesson14_第8张图片

pytorch深度学习实战lesson14_第9张图片

pytorch深度学习实战lesson14_第10张图片

代码:

#我们实现 dropout_layer 函数,该函数以dropout的概率丢弃张量输入X中的元素
import torch
from torch import nn
from d2l import torch as d2l
import matplotlib.pyplot as plt
def dropout_layer(X, dropout):#dropout相当于丢弃法公式中的p也就是概率。
    assert 0 <= dropout <= 1
    if dropout == 1:#当丢弃的概率p为1时,也就是100%丢弃,那么就返回全0的阵。
        return torch.zeros_like(X)
    if dropout == 0:#当丢弃的概率p为0时,也就是0%丢弃,那么就保持X。
        return X
    #生成0-1之间的均匀分布,如果其中的值大于dropout,mask就置一,否则置零。
    # 这里的mask就相当于掩膜矩阵,有置零和置一的作用。
    mask = (torch.randn(X.shape) > dropout).float()
    return mask * X / (1.0 - dropout)#做乘法比“X[mask]=0”这样的选元素要快,省资源。
#测试dropout_layer函数
X = torch.arange(16, dtype=torch.float32).reshape((2, 8))
print(X)
print(dropout_layer(X, 0.))#都不变
print(dropout_layer(X, 0.5))#百分之五十概率变成0,每次都是随机变的,这样才有效果
print(dropout_layer(X, 1.))#全变成0
#定义具有两个隐藏层的多层感知机,每个隐藏层包含256个单元
num_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256
dropout1, dropout2 = 0.2, 0.5
class Net(nn.Module):
    def __init__(self, num_inputs, num_outputs, num_hiddens1, num_hiddens2,
                 is_training=True):
        super(Net, self).__init__()
        self.num_inputs = num_inputs
        self.training = is_training
        self.lin1 = nn.Linear(num_inputs, num_hiddens1)#输入层
        self.lin2 = nn.Linear(num_hiddens1, num_hiddens2)#第一个隐藏层
        self.lin3 = nn.Linear(num_hiddens2, num_outputs)#第二个隐藏层
        self.relu = nn.ReLU()#输出层,以relu激活函数输出
    def forward(self, X):
        H1 = self.relu(self.lin1(X.reshape((-1, self.num_inputs))))#第一个隐藏层
        if self.training == True:           #如果是在训练的话
            H1 = dropout_layer(H1, dropout1)#就dropout
        H2 = self.relu(self.lin2(H1))       #第二个隐藏层
        if self.training == True:           #如果在训练的话
            H2 = dropout_layer(H2, dropout2)#就dropout
        out = self.lin3(H2)                 #输出层不dropout
        return out
net = Net(num_inputs, num_outputs, num_hiddens1, num_hiddens2)
#训练和测试
num_epochs, lr, batch_size = 10, 0.5, 256
loss = nn.CrossEntropyLoss()
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
trainer = torch.optim.SGD(net.parameters(), lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
plt.show()

简洁实现:

pytorch深度学习实战lesson14_第11张图片

pytorch深度学习实战lesson14_第12张图片

代码:

#简洁实现
import torch
from torch import nn
from d2l import torch as d2l
import matplotlib.pyplot as plt
num_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256
dropout1, dropout2= 0.2, 0.5
num_epochs, lr, batch_size = 10, 0.5, 256
net = nn.Sequential(nn.Flatten(), nn.Linear(784, 256), nn.ReLU(),
                    nn.Dropout(dropout1), nn.Linear(256, 256), nn.ReLU(),
                    #nn.Dropout(dropout2), nn.Linear(256, 256), nn.ReLU(),
                    nn.Dropout(dropout2), nn.Linear(256, 10))
loss = nn.CrossEntropyLoss()
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
def init_weights(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, std=0.01)
net.apply(init_weights)
#对模型进行训练和测试
trainer = torch.optim.SGD(net.parameters(), lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
plt.show()


拓展:

在简洁实现的基础上,调整参数看有什么变化。

1、把两个dropout的概率都设为0(代码第7行)

pytorch深度学习实战lesson14_第13张图片

和简洁实现比,没什么大区别。

2、把两个dropout的概率分别设为0.7和0.9(代码第7行)

Traceback (most recent call last):

  File "D:\Python\pythonProject\11.14.2丢弃法简洁实现.py", line 20, in

    d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

  File "D:\anaconda9.20\lib\site-packages\d2l\torch.py", line 343, in train_ch3

    assert train_loss < 0.5, train_loss

AssertionError: 2.3032064454396566

3、把两个dropout的概率都设为1(代码第7行)

相当于把隐藏层神经元都给换成0了。

报错了

Traceback (most recent call last):

  File "D:\Python\pythonProject\11.14.2丢弃法简洁实现.py", line 20, in

    d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

  File "D:\anaconda9.20\lib\site-packages\d2l\torch.py", line 343, in train_ch3

    assert train_loss < 0.5, train_loss

AssertionError: 2.3032064454396566

4、把两个dropout的概率分别设为1和0(代码第7行)

Traceback (most recent call last):

  File "D:\Python\pythonProject\11.14.2丢弃法简洁实现.py", line 20, in

    d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

  File "D:\anaconda9.20\lib\site-packages\d2l\torch.py", line 343, in train_ch3

    assert train_loss < 0.5, train_loss

AssertionError: 2.3032064454396566

5、把两个dropout的概率分别设为0和1(代码第7行)

Traceback (most recent call last):

  File "D:\Python\pythonProject\11.14.2丢弃法简洁实现.py", line 20, in

    d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

  File "D:\anaconda9.20\lib\site-packages\d2l\torch.py", line 343, in train_ch3

    assert train_loss < 0.5, train_loss

AssertionError: 2.3032064454396566

上面这三种情况都是dropout1和dropout2里面有一个设的比较大的时候才会报错,报错的原因是说torch.py里面有一句assert语句出问题了。这块我还没想到怎么解决。我也不是很明白torch.py里面的三组assert语句有什么用。。如果有大佬明白咋回事的话可以指点一下。谢谢。

6、加个隐藏层。

pytorch深度学习实战lesson14_第14张图片

pytorch深度学习实战lesson14_第15张图片

感觉效果不是很好啊。

后来把隐藏层的输入输出维度改了一下就好点了:

pytorch深度学习实战lesson14_第16张图片

pytorch深度学习实战lesson14_第17张图片

你可能感兴趣的:(人工智能,算法,python,pytorch)