✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
个人主页:Matlab科研工作室
个人信条:格物致知。
更多Matlab仿真内容点击
智能优化算法 神经网络预测 雷达通信 无线传感器
信号处理 图像处理 路径规划 元胞自动机 无人机 电力系统
为了解决麻雀搜索算法存在迭代后期搜索多样性不足,容易陷入局部最优等问题,提出了一种基于莱维飞行扰动策略的改进麻雀搜索算法.首先借鉴Sin混沌搜索机制,改进种群初始化策略.然后在麻雀种群觅食搜索过程中引入莱维飞行扰动机制,牵引种群移动适当的步长,增加空间搜索的多样性.最后对14个典型高维测试函数进行实验的结果表明:所提出的算法相比于传统的麻雀搜索算法和新提出的混沌麻雀搜索算法与改进麻雀搜索算法,在保持算法全局寻优能力的基础上大幅度提高了收敛速度和求解精度,能有效避免搜索过程陷入局部最优的情况,寻优率高,收敛能力强,可用于解决多峰及高维空间优化问题.
%_________________________________________________________________________%
% 麻雀优化算法 %
%_________________________________________________________________________%
function [Best_pos,Best_score,curve]=SSA(pop,Max_iter,lb,ub,dim,fobj)
ST = 0.6;%预警值
PD = 0.7;%发现者的比列,剩下的是加入者
SD = 0.2;%意识到有危险麻雀的比重
PDNumber = round(pop*PD); %发现者数量
SDNumber = round(pop*SD);%意识到有危险麻雀数量
if(max(size(ub)) == 1)
ub = ub.*ones(1,dim);
lb = lb.*ones(1,dim);
end
%种群初始化
X0=initialization(pop,dim,ub,lb);
X = X0;
%计算初始适应度值
fitness = zeros(1,pop);
for i = 1:pop
fitness(i) = fobj(X(i,:));
end
[fitness, index]= sort(fitness);%排序
BestF = fitness(1);
WorstF = fitness(end);
GBestF = fitness(1);%全局最优适应度值
for i = 1:pop
X(i,:) = X0(index(i),:);
end
curve=zeros(1,Max_iter);
GBestX = X(1,:);%全局最优位置
X_new = X;
for i = 1: Max_iter
BestF = fitness(1);
WorstF = fitness(end);
R2 = rand(1);
for j = 1:PDNumber
if(R2 X_new(j,:) = X(j,:).*exp(-j/(rand(1)*Max_iter)); else X_new(j,:) = X(j,:) + randn()*ones(1,dim); end end for j = PDNumber+1:pop % if(j>(pop/2)) if(j>(pop - PDNumber)/2 + PDNumber) X_new(j,:)= randn().*exp((X(end,:) - X(j,:))/j^2); else %产生-1,1的随机数 A = ones(1,dim); for a = 1:dim if(rand()>0.5) A(a) = -1; end end AA = A'*inv(A*A'); X_new(j,:)= X(1,:) + abs(X(j,:) - X(1,:)).*AA'; end end Temp = randperm(pop); SDchooseIndex = Temp(1:SDNumber); for j = 1:SDNumber if(fitness(SDchooseIndex(j))>BestF) X_new(SDchooseIndex(j),:) = X(1,:) + randn().*abs(X(SDchooseIndex(j),:) - X(1,:)); elseif(fitness(SDchooseIndex(j))== BestF) K = 2*rand() -1; X_new(SDchooseIndex(j),:) = X(SDchooseIndex(j),:) + K.*(abs( X(SDchooseIndex(j),:) - X(end,:))./(fitness(SDchooseIndex(j)) - fitness(end) + 10^-8)); end end %边界控制 for j = 1:pop for a = 1: dim if(X_new(j,a)>ub(a)) X_new(j,a) =ub(a); end if(X_new(j,a) X_new(j,a) =lb(a); end end end %更新位置 for j=1:pop fitness_new(j) = fobj(X_new(j,:)); end for j = 1:pop if(fitness_new(j) < GBestF) GBestF = fitness_new(j); GBestX = X_new(j,:); end end X = X_new; fitness = fitness_new; %排序更新 [fitness, index]= sort(fitness);%排序 BestF = fitness(1); WorstF = fitness(end); for j = 1:pop X(j,:) = X(index(j),:); end curve(i) = GBestF; end Best_pos =GBestX; Best_score = curve(end); end [1]马卫, 朱娴. 基于莱维飞行扰动策略的麻雀搜索算法[J]. 应用科学学报, 2022, 40(1):15. ❤️部分理论引用网络文献,若有侵权联系博主删除 ❤️ 关注我领取海量matlab电子书和数学建模资料
⛄ 运行结果
⛄ 参考文献
⛄ Matlab代码关注