轻量化网络 Mobilenet V1/V2/V3 学习记录

    • 1. 传统卷积
    • 2. Mobilenet V1
      • 2.1 Separable卷积
      • 2.2 整体结构
    • 3. Mobilenet V2
      • 3.1 Relu
      • 3.2 逆残差
      • 3.3 整体结构
    • 4. Mobilenet V3
      • 4.1 SE attention
      • 4.2 Switch激活函数
    • 5. Mobilenet V3 代码

2016年直至现在,业内提出了SqueezeNet、ShuffleNet、NasNet、MnasNet以及MobileNet等轻量级网络模型。这些模型使移动终端、嵌入式设备运行神经网络模型成为可能。

V1(Separable卷积)->V2(逆残差)->V3(SE)

1. 传统卷积

轻量化网络 Mobilenet V1/V2/V3 学习记录_第1张图片
输入图像的channel=卷积核的channel
轻量化网络 Mobilenet V1/V2/V3 学习记录_第2张图片
计算量 与 H W 卷积核大小有关
轻量化网络 Mobilenet V1/V2/V3 学习记录_第3张图片

2. Mobilenet V1

2.1 Separable卷积

Step1:逐通道独立卷积(Depthwise卷积):一个卷积核负责一个通道
轻量化网络 Mobilenet V1/V2/V3 学习记录_第4张图片轻量化网络 Mobilenet V1/V2/V3 学习记录_第5张图片

Step2:逐点卷积(Pointwise卷积):卷积核1x1的普通卷积,省参数,N个卷积核得到N个特征图
轻量化网络 Mobilenet V1/V2/V3 学习记录_第6张图片
两步走的Separable卷积效果与普通卷积相似,但计算量大大减小
轻量化网络 Mobilenet V1/V2/V3 学习记录_第7张图片
轻量化网络 Mobilenet V1/V2/V3 学习记录_第8张图片
轻量化网络 Mobilenet V1/V2/V3 学习记录_第9张图片

2.2 整体结构

轻量化网络 Mobilenet V1/V2/V3 学习记录_第10张图片
v1一路卷积到底
使用relu6

3. Mobilenet V2

轻量化网络 Mobilenet V1/V2/V3 学习记录_第11张图片

3.1 Relu

relu使低维数据损失信息
轻量化网络 Mobilenet V1/V2/V3 学习记录_第12张图片

3.2 逆残差

轻量化网络 Mobilenet V1/V2/V3 学习记录_第13张图片
轻量化网络 Mobilenet V1/V2/V3 学习记录_第14张图片
轻量化网络 Mobilenet V1/V2/V3 学习记录_第15张图片

3.3 整体结构

轻量化网络 Mobilenet V1/V2/V3 学习记录_第16张图片

4. Mobilenet V3

轻量化网络 Mobilenet V1/V2/V3 学习记录_第17张图片

4.1 SE attention

轻量化网络 Mobilenet V1/V2/V3 学习记录_第18张图片
Step1:求每个通道的权重值(1x1xc)(全局平均池化)
轻量化网络 Mobilenet V1/V2/V3 学习记录_第19张图片

Step2:使用两个全连接层计算权重值的回归值sc(1x1xc),然后完成加权操作(每个通道权重回归值sc x 每个通道原始特征图uc)

轻量化网络 Mobilenet V1/V2/V3 学习记录_第20张图片

4.2 Switch激活函数

轻量化网络 Mobilenet V1/V2/V3 学习记录_第21张图片

5. Mobilenet V3 代码

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import init



class hswish(nn.Module):
    def forward(self, x):
        out = x * F.relu6(x + 3, inplace=True) / 6
        return out


class hsigmoid(nn.Module):
    def forward(self, x):
        out = F.relu6(x + 3, inplace=True) / 6
        return out


class SeModule(nn.Module):
    def __init__(self, in_size, reduction=4):
        super(SeModule, self).__init__()
        self.se = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(in_size, in_size // reduction, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(in_size // reduction),
            nn.ReLU(inplace=True),
            nn.Conv2d(in_size // reduction, in_size, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(in_size),
            hsigmoid()
        )

    def forward(self, x):
        return x * self.se(x)


class Block(nn.Module):
    '''expand + depthwise + pointwise'''
    def __init__(self, kernel_size, in_size, expand_size, out_size, nolinear, semodule, stride):
        super(Block, self).__init__()
        self.stride = stride
        self.se = semodule

        self.conv1 = nn.Conv2d(in_size, expand_size, kernel_size=1, stride=1, padding=0, bias=False)
        self.bn1 = nn.BatchNorm2d(expand_size)
        self.nolinear1 = nolinear
        self.conv2 = nn.Conv2d(expand_size, expand_size, kernel_size=kernel_size, stride=stride, padding=kernel_size//2, groups=expand_size, bias=False)
        self.bn2 = nn.BatchNorm2d(expand_size)
        self.nolinear2 = nolinear
        self.conv3 = nn.Conv2d(expand_size, out_size, kernel_size=1, stride=1, padding=0, bias=False)
        self.bn3 = nn.BatchNorm2d(out_size)

        self.shortcut = nn.Sequential()
        if stride == 1 and in_size != out_size:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_size, out_size, kernel_size=1, stride=1, padding=0, bias=False),
                nn.BatchNorm2d(out_size),
            )

    def forward(self, x):
        out = self.nolinear1(self.bn1(self.conv1(x)))
        out = self.nolinear2(self.bn2(self.conv2(out)))
        out = self.bn3(self.conv3(out))
        if self.se != None:
            out = self.se(out)
        out = out + self.shortcut(x) if self.stride==1 else out
        return out


class MobileNetV3_Large(nn.Module):
    def __init__(self, num_classes=1000):
        super(MobileNetV3_Large, self).__init__()
        self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=2, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(16)
        self.hs1 = hswish()

        self.bneck = nn.Sequential(
            Block(3, 16, 16, 16, nn.ReLU(inplace=True), None, 1),
            Block(3, 16, 64, 24, nn.ReLU(inplace=True), None, 2),
            Block(3, 24, 72, 24, nn.ReLU(inplace=True), None, 1),
            Block(5, 24, 72, 40, nn.ReLU(inplace=True), SeModule(40), 2),
            Block(5, 40, 120, 40, nn.ReLU(inplace=True), SeModule(40), 1),
            Block(5, 40, 120, 40, nn.ReLU(inplace=True), SeModule(40), 1),
            Block(3, 40, 240, 80, hswish(), None, 2),
            Block(3, 80, 200, 80, hswish(), None, 1),
            Block(3, 80, 184, 80, hswish(), None, 1),
            Block(3, 80, 184, 80, hswish(), None, 1),
            Block(3, 80, 480, 112, hswish(), SeModule(112), 1),
            Block(3, 112, 672, 112, hswish(), SeModule(112), 1),
            Block(5, 112, 672, 160, hswish(), SeModule(160), 1),
            Block(5, 160, 672, 160, hswish(), SeModule(160), 2),
            Block(5, 160, 960, 160, hswish(), SeModule(160), 1),
        )


        self.conv2 = nn.Conv2d(160, 960, kernel_size=1, stride=1, padding=0, bias=False)
        self.bn2 = nn.BatchNorm2d(960)
        self.hs2 = hswish()
        self.linear3 = nn.Linear(960, 1280)
        self.bn3 = nn.BatchNorm1d(1280)
        self.hs3 = hswish()
        self.linear4 = nn.Linear(1280, num_classes)
        self.init_params()

    def init_params(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                init.kaiming_normal_(m.weight, mode='fan_out')
                if m.bias is not None:
                    init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                init.constant_(m.weight, 1)
                init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                init.normal_(m.weight, std=0.001)
                if m.bias is not None:
                    init.constant_(m.bias, 0)

    def forward(self, x):
        out = self.hs1(self.bn1(self.conv1(x)))
        out = self.bneck(out)
        out = self.hs2(self.bn2(self.conv2(out)))
        out = F.avg_pool2d(out, 7)
        out = out.view(out.size(0), -1)
        out = self.hs3(self.bn3(self.linear3(out)))
        out = self.linear4(out)
        return out



class MobileNetV3_Small(nn.Module):
    def __init__(self, num_classes=1000):
        super(MobileNetV3_Small, self).__init__()
        self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=2, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(16)
        self.hs1 = hswish()

        self.bneck = nn.Sequential(
            Block(3, 16, 16, 16, nn.ReLU(inplace=True), SeModule(16), 2),
            Block(3, 16, 72, 24, nn.ReLU(inplace=True), None, 2),
            Block(3, 24, 88, 24, nn.ReLU(inplace=True), None, 1),
            Block(5, 24, 96, 40, hswish(), SeModule(40), 2),
            Block(5, 40, 240, 40, hswish(), SeModule(40), 1),
            Block(5, 40, 240, 40, hswish(), SeModule(40), 1),
            Block(5, 40, 120, 48, hswish(), SeModule(48), 1),
            Block(5, 48, 144, 48, hswish(), SeModule(48), 1),
            Block(5, 48, 288, 96, hswish(), SeModule(96), 2),
            Block(5, 96, 576, 96, hswish(), SeModule(96), 1),
            Block(5, 96, 576, 96, hswish(), SeModule(96), 1),
        )


        self.conv2 = nn.Conv2d(96, 576, kernel_size=1, stride=1, padding=0, bias=False)
        self.bn2 = nn.BatchNorm2d(576)
        self.hs2 = hswish()
        self.linear3 = nn.Linear(576, 1280)
        self.bn3 = nn.BatchNorm1d(1280)
        self.hs3 = hswish()
        self.linear4 = nn.Linear(1280, num_classes)
        self.init_params()

    def init_params(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                init.kaiming_normal_(m.weight, mode='fan_out')
                if m.bias is not None:
                    init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                init.constant_(m.weight, 1)
                init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                init.normal_(m.weight, std=0.001)
                if m.bias is not None:
                    init.constant_(m.bias, 0)

    def forward(self, x):
        out = self.hs1(self.bn1(self.conv1(x)))
        out = self.bneck(out)
        out = self.hs2(self.bn2(self.conv2(out)))
        out = F.avg_pool2d(out, 7)
        out = out.view(out.size(0), -1)
        out = self.hs3(self.bn3(self.linear3(out)))
        out = self.linear4(out)
        return out



def test():
    net = MobileNetV3_Small()
    x = torch.randn(2,3,224,224)
    y = net(x)
    print(y.size())

test()

你可能感兴趣的:(深度学习,深度学习)