关于深度学习神经网络模型训练,参数过大,导致显卡内存溢出问题的总结

实验是利用CIFAR10模型,计算将图片分成10个分类的误差。一开始采用cpu模型来训练,迭代一个epoch需要50分钟,所以换成GPU模型,GPU有4G内存,结果刚加载模型显卡内存就溢出。

报错如下:

先用keras来计算网络的大小,参数的个数。

(50000, 32, 32, 3) (50000,) (10000, 32, 32, 3) (10000,)
sample: (512, 32, 32, 3) (512,) tf.Tensor(-1.0, shape=(), dtype=float32) tf.Tensor(1.0, shape=(), dtype=float32)
Model: "res_net_1"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
========================================&#

你可能感兴趣的:(深度学习,神经网络,深度学习,tensorflow,内存管理,1024程序员节)