计算机视觉需要学什么?CV知识点

最近有人问计算机视觉需要学什么?我自己本身是通过自学然后找到了计算机视觉相关的工作,这里我分享一下自己的当初掌握的知识点,希望能帮助到你,以下内容仅供参考。

计算机视觉需要学什么?

学习计算机视觉需要具备的知识储备有:

1、图像处理的知识。图像处理大致包括的内容:光学成像基础、颜色、滤波器、局部图像特征、图像纹理、图像配等。

2、立体视觉的知识。立体视觉大致包括的内容:相机几何模型、双目视觉、从运动中恢复物体结构、三维重建技术等。

3、人工智能的知识。人工智能大致包括的内容:场景理解与分析、模式识别、图像搜索、数据挖掘、深度学习等。

4、与计算机视觉相关的学科还有:机器视觉、数字图像处理、医学成像、摄影测量、传感器等。

计算机视觉需要学什么?CV知识点_第1张图片

有了扎实的深度学习基础后,才能真正进入计算机视觉专业知识的学习。

深度学习之数据使用

数据是深度学习系统的输入,对深度学习算法的落地起着至关重要的作用!如果没有超越百万级图片数量的ImageNet数据集的整理提出,深度学习计算机视觉算法的落地进程肯定会被推迟!

随着各类基础CV算法的成熟,决定模型能否上线的关键,很大程度上取决于数据的质量以及数据是否被正确地使用!你和大厂差的往往并不是算法的先进性,而是数据的多少!然而这一点很容易被忽视,尤其是被缺少工业界实战经验的学习者忽视。

免费分享一些我整理的人工智能学习资料给大家,包括一些AI常用框架实战视频、图像识别、OpenCV、NLQ、机器学习、计算机视觉、深度学习与神经网络等视频、课件源码、国内外知名精华资源、AI热门论文、行业报告等。

为了更好的系统学习AI,推荐大家收藏一份。

下面是部分截图,文末附免费下载方式。

一、人工智能课程及项目

二、国内外知名精华资源

三、人工智能论文合集

四、人工智能行业报告

学好人工智能,要多看书,多动手,多实践,要想提高自己的水平,一定要学会沉下心来慢慢的系统学习,最终才能有所收获。

点击下方名片,扫码免费下载文中资料。

你可能感兴趣的:(计算机视觉CV,计算机视觉,人工智能,CV工程师)