① 神经网络训练的就是函数系数 K k K_{k} Kk与d。
import torch
import torchvision
from torch import nn
from torch.nn import ReLU
from torch.nn import Sigmoid
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
dataset = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset, batch_size=64)
for data in dataloader:
imgs, targets = data
print(imgs.shape)
output = torch.reshape(imgs,(1,1,1,-1))
print(output.shape)
Output exceeds the size limit. Open the full output data in a text editor
Files already downloaded and verified
torch.Size([64, 3, 32, 32])
torch.Size([1, 1, 1, 196608])
torch.Size([64, 3, 32, 32])
torch.Size([1, 1, 1, 196608])
torch.Size([64, 3, 32, 32])
torch.Size([1, 1, 1, 196608])
torch.Size([64, 3, 32, 32])
torch.Size([1, 1, 1, 196608])
torch.Size([64, 3, 32, 32])
torch.Size([1, 1, 1, 196608])
torch.Size([64, 3, 32, 32])
torch.Size([1, 1, 1, 196608])
torch.Size([64, 3, 32, 32])
torch.Size([1, 1, 1, 196608])
torch.Size([64, 3, 32, 32])
torch.Size([1, 1, 1, 196608])
torch.Size([64, 3, 32, 32])
torch.Size([1, 1, 1, 196608])
torch.Size([64, 3, 32, 32])
torch.Size([1, 1, 1, 196608])
torch.Size([64, 3, 32, 32])
torch.Size([1, 1, 1, 196608])
torch.Size([64, 3, 32, 32])
torch.Size([1, 1, 1, 196608])
...
torch.Size([64, 3, 32, 32])
torch.Size([1, 1, 1, 196608])
torch.Size([16, 3, 32, 32])
torch.Size([1, 1, 1, 49152])
import torch
import torchvision
from torch import nn
from torch.nn import Linear
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
dataset = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset, batch_size=64,drop_last=True)
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.linear1 = Linear(196608,10)
def forward(self, input):
output = self.linear1(input)
return output
tudui = Tudui()
writer = SummaryWriter("logs")
step = 0
for data in dataloader:
imgs, targets = data
print(imgs.shape)
writer.add_images("input", imgs, step)
output = torch.reshape(imgs,(1,1,1,-1)) # 方法一:拉平
print(output.shape)
output = tudui(output)
print(output.shape)
writer.add_images("output", output, step)
step = step + 1
Output exceeds the size limit. Open the full output data in a text editor
Files already downloaded and verified
torch.Size([64, 3, 32, 32])
torch.Size([1, 1, 1, 196608])
torch.Size([1, 1, 1, 10])
torch.Size([64, 3, 32, 32])
torch.Size([1, 1, 1, 196608])
torch.Size([1, 1, 1, 10])
torch.Size([64, 3, 32, 32])
torch.Size([1, 1, 1, 196608])
torch.Size([1, 1, 1, 10])
torch.Size([64, 3, 32, 32])
torch.Size([1, 1, 1, 196608])
torch.Size([1, 1, 1, 10])
torch.Size([64, 3, 32, 32])
torch.Size([1, 1, 1, 196608])
torch.Size([1, 1, 1, 10])
torch.Size([64, 3, 32, 32])
torch.Size([1, 1, 1, 196608])
torch.Size([1, 1, 1, 10])
torch.Size([64, 3, 32, 32])
torch.Size([1, 1, 1, 196608])
torch.Size([1, 1, 1, 10])
torch.Size([64, 3, 32, 32])
torch.Size([1, 1, 1, 196608])
torch.Size([1, 1, 1, 10])
...
torch.Size([1, 1, 1, 196608])
torch.Size([1, 1, 1, 10])
torch.Size([64, 3, 32, 32])
torch.Size([1, 1, 1, 196608])
Output exceeds the size limit. Open the full output data in a text editor
torch.Size([1, 1, 1, 10]) torch.Size([64, 3, 32, 32]) torch.Size([1, 1, 1, 196608]) torch.Size([1, 1, 1, 10]) torch.Size([64, 3, 32, 32]) torch.Size([1, 1, 1, 196608]) torch.Size([1, 1, 1, 10]) torch.Size([64, 3, 32, 32]) torch.Size([1, 1, 1, 196608]) torch.Size([1, 1, 1, 10]) torch.Size([64, 3, 32, 32]) torch.Size([1, 1, 1, 196608]) torch.Size([1, 1, 1, 10]) torch.Size([64, 3, 32, 32]) torch.Size([1, 1, 1, 196608]) torch.Size([1, 1, 1, 10]) torch.Size([64, 3, 32, 32]) torch.Size([1, 1, 1, 196608]) torch.Size([1, 1, 1, 10]) torch.Size([64, 3, 32, 32]) torch.Size([1, 1, 1, 196608]) torch.Size([1, 1, 1, 10]) torch.Size([64, 3, 32, 32]) torch.Size([1, 1, 1, 196608]) torch.Size([1, 1, 1, 10])
...
torch.Size([1, 1, 1, 10]) torch.Size([64, 3, 32, 32]) torch.Size([1, 1, 1, 196608]) torch.Size([1, 1, 1, 10])
在 Anaconda 终端里面,激活py3.6.3环境,再输入 tensorboard --logdir=C:\Users\qj\CV\logs 命令,将网址赋值浏览器的网址栏,回车,即可查看tensorboard显示日志情况。
import torch
import torchvision
from torch import nn
from torch.nn import Linear
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
dataset = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset, batch_size=64,drop_last=True)
class MyModule(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.linear1 = Linear(196608,10)
def forward(self, input):
output = self.linear1(input)
return output
myModule= MyModule()
writer = SummaryWriter("logs")
step = 0
for data in dataloader:
imgs, targets = data
print(imgs.shape)
writer.add_images("input", imgs, step)
output = torch.flatten(imgs) # 方法二:拉平。展开为一维
print(output.shape)
output = myModule(output)
print(output.shape)
step = step + 1
Output exceeds the size limit. Open the full output data in a text editor
Files already downloaded and verified
torch.Size([64, 3, 32, 32])
torch.Size([196608])
torch.Size([10])
torch.Size([64, 3, 32, 32])
torch.Size([196608])
torch.Size([10])
torch.Size([64, 3, 32, 32])
torch.Size([196608])
torch.Size([10])
torch.Size([64, 3, 32, 32])
torch.Size([196608])
torch.Size([10])
torch.Size([64, 3, 32, 32])
torch.Size([196608])
torch.Size([10])
torch.Size([64, 3, 32, 32])
torch.Size([196608])
torch.Size([10])
torch.Size([64, 3, 32, 32])
torch.Size([196608])
torch.Size([10])
torch.Size([64, 3, 32, 32])
torch.Size([196608])
torch.Size([10])
...
torch.Size([64, 3, 32, 32])
torch.Size([196608])
torch.Size([10])
torch.Size([64, 3, 32, 32])
Output exceeds the size limit. Open the full output data in a text editor
torch.Size([196608]) torch.Size([10]) torch.Size([64, 3, 32, 32]) torch.Size([196608]) torch.Size([10]) torch.Size([64, 3, 32, 32]) torch.Size([196608]) torch.Size([10]) torch.Size([64, 3, 32, 32]) torch.Size([196608]) torch.Size([10]) torch.Size([64, 3, 32, 32]) torch.Size([196608]) torch.Size([10]) torch.Size([64, 3, 32, 32]) torch.Size([196608]) torch.Size([10]) torch.Size([64, 3, 32, 32]) torch.Size([196608]) torch.Size([10]) torch.Size([64, 3, 32, 32]) torch.Size([196608]) torch.Size([10]) torch.Size([64, 3, 32, 32]) torch.Size([196608])
...
torch.Size([10]) torch.Size([64, 3, 32, 32]) torch.Size([196608]) torch.Size([10])