实际问题中所遇到的周期函数,它的周期不一定是 2 π 2\pi 2π。如之前提到的矩形波,它的周期函数是 T = 2 π ω T=\frac{2\pi}{\omega} T=ω2π。因此,这里讨论周期为 2 l 2l 2l的周期函数的傅里叶级数。根据之前讨论的结果,经过自变量的变量代换,可得到下面的定理:
定理:设周期为2l的周期函数 f ( x ) f(x) f(x)满足收敛定理的条件,则它的傅里叶级数展开式为
f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n c o s n π x l + b n s i n n π x l ) ( x ∈ C ) f(x)=\frac{a_0}{2}+\sum_{n=1}^\infty(a_ncos\frac{n\pi x}{l}+b_nsin\frac{n\pi x}{l})(x\in C) f(x)=2a0+n=1∑∞(ancoslnπx+bnsinlnπx)(x∈C)
其中
a n = 1 l ∫ − l l f ( x ) c o s n π x l d x ( n = 0 , 1 , 2 , ⋅ ⋅ ⋅ ) b n = 1 l ∫ − l l f ( x ) s i n n π x l d x ( n = 1 , 2 , 3 , ⋅ ⋅ ⋅ ) C = { x ∣ f ( x ) = 1 2 [ f ( x − ) + f ( x + ) ] } a_n=\frac{1}{l}\int_{-l}^lf(x)cos\frac{n\pi x}{l}dx\quad (n=0,1,2,···) \\ b_n=\frac{1}{l}\int_{-l}^l f(x)sin\frac{n\pi x}{l}dx\quad (n=1,2,3,···)\\ C=\{x|f(x)=\frac{1}{2}[f(x^-)+f(x^+)]\} an=l1∫−llf(x)coslnπxdx(n=0,1,2,⋅⋅⋅)bn=l1∫−llf(x)sinlnπxdx(n=1,2,3,⋅⋅⋅)C={x∣f(x)=21[f(x−)+f(x+)]}
当 f ( x ) f(x) f(x)为奇函数时,
f ( x ) = ∑ n = 1 ∞ b n s i n n π x l ( x ∈ C ) f(x)=\sum_{n=1}^\infty b_nsin\frac{n\pi x}{l}\quad (x\in C) f(x)=n=1∑∞bnsinlnπx(x∈C)
其中
b n = 2 l ∫ 0 l f ( x ) s i n n π x l d x ( n = 1 , 2 , 3 , ⋅ ⋅ ⋅ ) b_n=\frac{2}{l}\int_0^lf(x)sin\frac{n\pi x}{l}dx \quad (n=1,2,3,···) bn=l2∫0lf(x)sinlnπxdx(n=1,2,3,⋅⋅⋅)
当 f ( x ) f(x) f(x)为偶函数时,
f ( x ) = a 0 2 + ∑ n = 1 ∞ a n c o s n π x l ( x ∈ C ) f(x)=\frac{a_0}{2}+\sum_{n=1}^\infty a_ncos\frac{n\pi x}{l}(x\in C) f(x)=2a0+n=1∑∞ancoslnπx(x∈C)
其中
a n = 2 l ∫ 0 l f ( x ) c o s n π x l d x ( n = 0 , 1 , 2 , ⋅ ⋅ ⋅ ) a_n=\frac{2}{l}\int_0^l f(x)cos\frac{n\pi x}{l}dx \quad(n=0,1,2,···) an=l2∫0lf(x)coslnπxdx(n=0,1,2,⋅⋅⋅)
傅里叶级数可用复数形式表示,在电子技术中,经常应用这种形式。
设周期为 2 l 2l 2l的周期函数 f ( x ) f(x) f(x)的傅里叶级数为
a 0 2 + ∑ n = 1 ∞ ( a n c o s n π x l + b n s i n n π x l ) (1) \frac{a_0}{2}+\sum_{n=1}^\infty(a_ncos\frac{n\pi x}{l}+b_nsin\frac{n\pi x}{l}) \tag{1} 2a0+n=1∑∞(ancoslnπx+bnsinlnπx)(1)
其中系数 a n a_n an与 b n b_n bn为
a n = 1 l ∫ − l l f ( x ) c o s n π x l d x ( n = 0 , 1 , 2 , ⋅ ⋅ ⋅ ) b n = 1 l ∫ − l l f ( x ) s i n n π x l d x ( n = 1 , 2 , 3 , ⋅ ⋅ ⋅ ) (2) a_n=\frac{1}{l}\int_{-l}^lf(x)cos\frac{n\pi x}{l}dx \quad (n=0,1,2,···)\\ b_n=\frac{1}{l}\int_{-l}^lf(x)sin\frac{n\pi x}{l}dx \quad (n=1,2,3,···) \tag{2} an=l1∫−llf(x)coslnπxdx(n=0,1,2,⋅⋅⋅)bn=l1∫−llf(x)sinlnπxdx(n=1,2,3,⋅⋅⋅)(2)
利用欧拉公式
c o s t = e t i + e − t i 2 , s i n t = e t i − e − t i 2 i cos\,t=\frac{e^{ti}+e^{-ti}}{2},\space sin\,t=\frac{e^{ti}-e^{-ti}}{2i} cost=2eti+e−ti, sint=2ieti−e−ti
把(1)式化为
a 0 2 + ∑ n = 1 ∞ [ a n 2 ( e n π x l i + e − n π x l i ) − b n i 2 ( e n π x l i − e − n π x l i ) ] = a 0 2 + ∑ n = 1 ∞ [ a n − b n i 2 e n π x l i + a n + b n i 2 e − n π x l i ] (3) \frac{a_0}{2}+\sum_{n=1}^\infty[\frac{a_n}{2}(e^{\frac{n\pi x}{l}i}+e^{-\frac{n\pi x}{l}i})-\frac{b_ni}{2}(e^{\frac{n\pi x}{l}i}-e^{-\frac{n\pi x}{l}i})] \\ =\frac{a_0}{2}+\sum_{n=1}^\infty[\frac{a_n-b_ni}{2}e^{\frac{n\pi x}{l}i}+\frac{a_n+b_ni}{2}e^{-\frac{n\pi x}{l}i}] \tag{3} 2a0+n=1∑∞[2an(elnπxi+e−lnπxi)−2bni(elnπxi−e−lnπxi)]=2a0+n=1∑∞[2an−bnielnπxi+2an+bnie−lnπxi](3)
记
a 0 2 = c 0 , a n − b n i 2 = c n , a n + b n i 2 = c − n ( n = 1 , 2 , 3 , ⋅ ⋅ ⋅ ) (4) \frac{a_0}{2}=c_0, \quad \frac{a_n-b_ni}{2}=c_n,\quad \frac{a_n+b_ni}{2}=c_{-n} \quad (n=1,2,3,···) \tag{4} 2a0=c0,2an−bni=cn,2an+bni=c−n(n=1,2,3,⋅⋅⋅)(4)
则(2)式就表示为
c 0 + ∑ n = 1 ∞ ( c n e n π x l i + c − n e − n π x l i ) = ( c n e n π x l i ) n = 0 + ∑ n = 1 ∞ ( c n e n π x l i + c − n e − n π x l i ) c_0+\sum_{n=1}^\infty (c_ne^{\frac{n\pi x}{l}i}+c_{-n}e^{-\frac{n\pi x}{l}i})=(c_ne^{\frac{n\pi x}{l}i})_{n=0}+\sum_{n=1}^\infty(c_ne^{\frac{n\pi x}{l}i}+c_{-n}e^{-\frac{n\pi x}{l}i}) c0+n=1∑∞(cnelnπxi+c−ne−lnπxi)=(cnelnπxi)n=0+n=1∑∞(cnelnπxi+c−ne−lnπxi)
即得傅里叶级数的复数形式为
∑ n = − ∞ ∞ c n e n π x l i \sum_{n=-\infty}^\infty c_ne^{\frac{n\pi x}{l}i} n=−∞∑∞cnelnπxi
为得出系数 c n c_n cn的表达式,把(2)式代入(4),得
c 0 = a 0 2 = 1 2 l ∫ − l l f ( x ) d x ; c n = 1 2 l ∫ − l l f ( x ) e − n π x l d x ( n = 1 , 2 , 3 , ⋅ ⋅ ⋅ ) c − n = a n + b n i 2 = 1 2 l ∫ − l l f ( x ) e n π x l i d x ( n = 0 , 1 , 2 , ⋅ ⋅ ⋅ ) c_0=\frac{a_0}{2}=\frac{1}{2l}\int_{-l}^lf(x)dx ;\\ c_n=\frac{1}{2l}\int_{-l}^l f(x)e^{-\frac{n\pi x}{l}dx} \quad (n=1,2,3, ···) \\ c_{-n}=\frac{a_n+b_ni}{2}=\frac{1}{2l}\int_{-l}^lf(x)e^{\frac{n\pi x}{l}i}dx \quad (n=0, 1, 2,···) c0=2a0=2l1∫−llf(x)dx;cn=2l1∫−llf(x)e−lnπxdx(n=1,2,3,⋅⋅⋅)c−n=2an+bni=2l1∫−llf(x)elnπxidx(n=0,1,2,⋅⋅⋅)
将已得的结果合并写为
c n = 1 2 l ∫ − l l f ( x ) e − n π x l i d x ( n = 0 , ± 1 , ± 2 , ⋅ ⋅ ⋅ ) c_n=\frac{1}{2l}\int_{-l}^lf(x)e^{-\frac{n\pi x}{l}i}dx \quad (n=0,\pm 1,\pm 2, ···) cn=2l1∫−llf(x)e−lnπxidx(n=0,±1,±2,⋅⋅⋅)
这就是傅里叶系数的复数形式。
傅里叶级数的两种形式本质上是一样的,但复数形式比较简洁,且只用一个算式计算系数。