- AI 驱动的自动化测试:从代码到报告的全面解读
测试者家园
人工智能软件测试质量效能测试策略自动化测试测试报告测试用例
在软件开发的生命周期中,测试一直是确保软件质量的关键环节。然而,随着开发规模的日益庞大,传统的手动测试和简单的自动化脚本已经无法满足高效、快速和高质量的需求。随着人工智能(AI)的兴起,尤其是在深度学习、自然语言处理(NLP)和智能决策算法方面的突破,AI驱动的自动化测试正逐渐成为现代软件开发中的核心组成部分。从自动生成测试用例、智能缺陷预测、到自动化报告生成,AI技术的应用为软件测试带来了革命性
- MATLAB图像处理
陈辰学长
图像处理matlab计算机视觉
MATLAB图像处理MATLAB,作为美国MathWorks公司出品的商业数学软件,以其强大的矩阵运算能力和丰富的函数库,在图像处理领域得到了广泛的应用。MATLAB不仅提供了基础的图像处理功能,还通过图像处理工具箱(ImageProcessingToolbox)等高级工具,为用户提供了从图像读取、显示、转换到高级分析和处理的一系列功能。以下将详细介绍MATLAB在图像处理方面的应用。一、MATL
- MATLAB 图像处理:阈值分割检测裂纹和划痕
PixelDyno
图像处理matlab计算机视觉Matlab
MATLAB图像处理:阈值分割检测裂纹和划痕阈值分割是一种常见的图像处理技术,可以将图像分成不同的区域。在裂纹和划痕检测中,阈值分割可以帮助我们将图像中的裂纹和划痕区域分离出来。本文将介绍如何使用MATLAB进行阈值分割裂纹和划痕检测。读入图像首先,我们需要读入一张待处理的图像。可以使用MATLAB的imread函数将图像读入到MATLAB中:img=imread('image.jpg');灰度化
- 8.3:Matlab中数组的基本运算(加减乘除)(课程共5800字,4段代码举例,带详细操作步骤)
小兔子平安
Matlab完整学习全解答matlab算法数据结构
例子1:数组的加法例子2:数组的减法例子3:数组的乘法例子4:数组的除法——例子1:数组的加法在Matlab中,可以使用"+"运算符对数组进行加法运算。如果要将两个数组相加,可以先定义两个数组a和b,然后使用"+"运算符对它们进行加法运算,将结果赋值给数组c。最后使用disp函数将数组c的值输出到屏幕上。a=[123];b=[456];c=a+b;disp(c);目录课程概述(课程共5800字,4
- 6.3:Matlab中二维数组的基本运算(加减乘除)(课程共5300字,4段代码举例,带详细操作步骤)
小兔子平安
Matlab完整学习全解答matlab机器学习开发语言
例子1:逐元素加法运算(Code①)例子2:矩阵乘法运算(Code②)例子3:逐元素除法运算(Code③)例子4:矩阵减法运算(Code④)——例子1:逐元素加法运算(Code①)%代码示例1:逐元素加法运算A=[123;456;789];B=[101112;131415;161718];C=A+B;disp(C);操作步骤:①打开Matlab软件;②创建一个名为A的二维数组,赋值为[123;45
- 智能汽车安全实战:车联网威胁检测从入门到精通(含CAN总线/OTA/深度学习完整代码实现)
Coderabo
DeepSeekR1模型企业级应用汽车安全深度学习
车联网安全威胁检测实战:从CAN总线到OTA的全链路攻防解析(附完整Python代码)一、车联网安全威胁现状与挑战随着智能网联汽车渗透率突破60%,车端ECU数量超过150个,车载通信接口增加至8种以上,攻击面呈现指数级增长趋势。2023年某知名车企曝出的OTA升级漏洞导致50万辆汽车面临远程控制风险,凸显车联网安全检测的紧迫性。二、车联网安全检测技术框架2.1威胁检测架构设计classVehic
- 58同城深度学习推理平台:基于Istio的云原生网关实践解析
ITPUB-微风
云原生深度学习istio
在当今数字化时代,深度学习技术的快速发展为各行各业带来了革命性的变化。作为国内领先的分类信息网站,58同城一直致力于通过技术创新提升服务质量和用户体验。近期,58同城AILab推出了一项重要的技术革新——基于Istio的云原生网关深度学习推理平台。本文将从技术角度深入解析这一创新实践,探讨其架构设计、应用效果以及未来发展方向。一、深度学习推理平台的重要性深度学习推理平台在58同城的业务中扮演着至关
- 内容中台重构智能服务:人工智能技术驱动精准决策
清风徐徐de来
其他
内容概要现代企业数字化转型进程中,内容中台与人工智能技术的深度融合正在重构智能服务的基础架构。通过整合自然语言处理、知识图谱构建与深度学习算法三大技术模块,该架构实现了从数据采集到决策输出的全链路智能化。在数据层,系统可对接CRM、ERP等企业软件,通过标准化接口完成多源异构数据的实时清洗与结构化处理,例如某金融科技平台利用动态知识图谱技术,将分散的客户行为数据与市场情报进行语义关联,形成可解释的
- 给你的数据加上杠杆:文本增强技术的研究进展及应用实践
熵简科技Value Simplex
作者信息:文本出自熵简科技NLP算法团队,团队利用迁移学习、少样本学习、无监督学习等深度学习领域最新的思想和技术,为熵简科技各大业务线提供底层AI技术支持和可落地的解决方案,包括前沿算法的领域内落地以及持续部署的后台支持等。导读:本文摘自熵简科技NLP团队的内部技术沙龙,文章系统性地回顾了自然语言处理领域中的文本增强技术在近几年的发展情况,重点列举和讨论了18年、19年中人们常用的五类文本增强技术
- 深度学习时间序列预测:LSTM算法构建PM2.5单变量模型及Python实现
代码编织匠人
python深度学习lstm
深度学习时间序列预测:LSTM算法构建PM2.5单变量模型及Python实现时间序列预测是指根据历史数据对未来的时间点进行预测,对于一些与时间相关的问题,例如气象、股票市场走势等,时间序列预测具有非常重要的应用价值。本文将介绍如何使用深度学习中的LSTM算法,构建针对空气质量(PM2.5)的时间序列单变量模型,并使用Python进行实现。数据准备首先,我们需要收集历史空气质量(PM2.5)数据,以
- 利用深度学习进行汇率预测:LSTM与Transformer模型的应用实践
人工智能_SYBH
深度学习lstmtransformer
第一部分:数据收集与准备1.1数据集介绍1.2数据准备第二部分:使用LSTM模型进行汇率预测2.1数据序列化2.2LSTM模型构建2.3模型训练与评估2.4结果可视化第三部分:使用Transformer模型进行汇率预测3.1数据序列化3.2Transformer模型构建3.3模型训练与评估3.4结果可视化结论引言外汇市场是一个充满波动性的金融市场,吸引了众多交易者和投资者。为了做出明智的决策,预测
- 25/2/16 <算法笔记> DirectPose
青椒大仙KI11
视觉计算机视觉
DirectPose是一种直接从图像中预测物体的6DoF(位姿:6DegreesofFreedom)姿态的方法,包括平移和平面旋转。它在目标检测、机器人视觉、增强现实(AR)和自动驾驶等领域中具有广泛应用。相比于传统的位姿估计方法,DirectPose试图简化复杂的处理流程,采用端到端的方式直接从图像中输出位姿参数。1.DirectPose是什么?DirectPose是一种端到端的神经网络方法,旨
- matlab整除方式
雅俗共赏100
matlab基础matlab
1.fix(x):截尾取整2.floor(x):不超过x的最大整数3.ceil(x):大于x的最小整数4.round(x):四舍五入取整
- 使用shell脚本运行python程序
GiantGo
#Pythonpython开发语言
在训练深度学习模型时,为了解放生产力,避免手动调参等,一般写成shell脚本的形式,执行一次shell就可以把所有的python程序给运行完毕。例如,我需要探究batchsize的影响,一般新手入门可能这样做:设置batchsize=8,运行一次main.py程序。设置batchsize=16,运行一次main.py程序。设置batchsize=32,运行一次main.py程序。设置batchsi
- FaceSwap——人脸的自动交换或替换
爱研究的小牛
AIGC——图像AIGC人工智能深度学习
一、FaceSwap介绍FaceSwap是一款开源的深度学习应用程序,旨在实现人脸的自动交换或替换。二、FaceSwap的核心功能人脸交换(FaceSwapping):FaceSwap的主要功能是将一张人脸从源图像或视频中提取出来,然后将其应用到目标图像或视频中。该功能适用于静态图片和动态视频处理。人脸自动检测与对齐(FaceDetectionandAlignment):在进行人脸交换之前,Fac
- Deepseek整合SpringAI
java技术小馆
javaspringcloud
在现代应用开发中,问答系统是一个常见的需求,尤其是在客服、教育和技术支持领域。本文将介绍如何使用SpringBoot、Deepseek和SpringAI构建一个简单的问答系统,并通过Postman调用API接口实现问答功能。通过本文,你将学习如何整合这些技术,快速实现一个高效的问答系统。1.技术栈介绍SpringBoot:用于快速构建Java后端服务。Deepseek:高性能的深度学习推理框架,用
- Matlab 点云移动最小二乘法(MLS)
大鱼BIGFISH
点云数据处理matlab最小二乘法点云移动最小二乘法(MLS)
文章目录一、简介二、实现代码三、实现效果参考文献一、简介我们要明白MLS是想用一组基函数来局部近似我们的目标函数,它非常类似于我们所学的泰勒公式,只不过它是基于局部的。这里我们以一维的MLS为例,其具体的原理如下所述:假设Ω为范数向量空间,而u为Ω内场变量的标量。为了形成一个近似函数uau^au
- 国外7个最佳大语言模型 (LLM) API推荐
程序员后端
大型语言模型(LLM)API将彻底改变我们处理语言的方式。在深度学习和机器学习算法的支持下,LLMAPI提供了前所未有的自然语言理解能力。通过利用这些新的API,开发人员现在可以创建能够以前所未有的方式理解和响应书面文本的应用程序。下面,我们将比较从Bard到ChatGPT、PaLM等市场上顶级LLMAPI。我们还将探讨整合这些LLM的潜在用例,并考虑其对语言处理的影响。什么是大语言模型(LLM)
- Ubuntu22.4.03服务器版安装及搭建深度学习环境的问题总结
蜡笔小祎在线学习
问题集合深度学习人工智能
Ubuntu22.4.03服务器版安装流程整个流程已经有很多分享帖了,这里概述一下:下载iso制作启动U盘,按f2进入安装,选择语言,键盘布局english,ubuntuserver安装,DHCP自动配置网络(问题1),代理服务器我们没填,配置阿里云镜源http://mirrors.aliyun.com/ubuntu/,磁盘分区(问题2),设置服务器密码,安装ssh远程工具,重启reboot。可参
- Vision Transformer(ViT):用 Transformer 颠覆图像识别
金外飞176
论文精读transformer深度学习人工智能
VisionTransformer(ViT):用Transformer颠覆图像识别在计算机视觉领域,卷积神经网络(CNN)长期以来一直是图像识别任务的主流架构。然而,近年来,自然语言处理(NLP)领域中大放异彩的Transformer架构也开始在图像识别中崭露头角。今天,我们将深入探讨一种创新的架构——VisionTransformer(ViT),它将Transformer的强大能力直接应用于图像
- 一文读懂MUSIC算法DOA估计的数学原理并仿真
迎风打盹儿
阵列信号处理MUSIC算法DOA估计阵列信号处理信号子空间噪声子空间
一文读懂MUSIC算法DOA估计的数学原理并仿真文章目录前言一、DOA估计基本原理二、MATLAB仿真总结前言MUSIC(MultipleSignalClassification)算法于1979年由R.O.Schmidt提出,是阵列信号处理中广泛应用的经典DOA(DirectionofArrival)估计算法,凭借其超分辨的估计性能受到广泛关注。本文将从数学公式推导的角度出发系统阐述MUSIC算法
- 【深度学习目标检测|YOLO算法5-1-1】YOLO家族进化史:从YOLOv1到YOLOv11的架构创新、性能优化与行业应用全解析...
985小水博一枚呀
论文解读深度学习目标检测YOLO人工智能算法架构网络
【深度学习目标检测|YOLO算法5-1-1】YOLO家族进化史:从YOLOv1到YOLOv11的架构创新、性能优化与行业应用全解析…【深度学习目标检测|YOLO算法5-1-1】YOLO家族进化史:从YOLOv1到YOLOv11的架构创新、性能优化与行业应用全解析…文章目录【深度学习目标检测|YOLO算法5-1-1】YOLO家族进化史:从YOLOv1到YOLOv11的架构创新、性能优化与行业应用全解
- 基于MUSIC算法的DOA估计Matlab仿真
fpga和matlab
★MATLAB算法仿真经验板块1:通信与信号处理matlabMUSIC算法DOA估计
up目录一、理论基础二、核心程序三、测试结果一、理论基础阵列信号处理是信号处理领域内的一个重要分支,在近些年来得到了迅速发展。波达方向(DirectionofArrival,DOA)估计是阵列信号处理的一个重要的研究领域,在雷达、通信、声纳、地震学等领域都有着广泛的应用前景。在DOA估计的发展过程中,人们对高分辨DOA估计算法一直有很大的研究兴趣,并在这一领域取得了很多重要的进展。阵列信号处理主要
- “傻瓜”学计量——主成分分析法PCA(原理+实操)
nn坚持学stata+matlab
计量算法机器学习人工智能学习笔记学习方法经验分享
提纲:1.PCA原理2.视频推荐:PCA原理spass操作stata操作+matlab实操1.背景在一些领域中,需要对大量数据进行观测。但是可能会带来变量之间具有相关性、分别对每个指标分析带来的偏误等问题。因此,要寻找一个合理的方法,在减少需要分析的直白的同时,尽量减少原指标包含的信息缺失。通常做法是对有关联性的变量进行合并,这样就可以用较少的综合指标分别代表存在于各个变量中的各类信息。常用的方法
- Python从0到100(三十九):数据提取之正则(文末免费送书)
是Dream呀
pythonmysql开发语言
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- 深度学习环境配置——Anaconda安装
tyyhmtyyhm
深度学习环境配置深度学习人工智能
目录Ⅰ.Windows系统安装Anaconda1.1下载安装Ⅱ.Linux系统安装Anaconda(适用于服务器安装)2.1下载2.2安装操作系统:windows11/ubuntu20/ubuntu18更新时间:20240221Ⅰ.Windows系统安装Anaconda1.1下载安装https://www.anaconda.com/download默认安装即可。Ⅱ.Linux系统安装Anacond
- 深度学习工厂的蓝图:拆解CUDA驱动、PyTorch与OpenCV的依赖关系
时光旅人01号
深度学习pytorchopencv
想象一下,你正在建造一座深度学习工厂,这座工厂专门用于高效处理深度学习任务(如训练神经网络)和计算机视觉任务(如图像处理)。为了让工厂顺利运转,你需要搭建基础设施、安装设备、设置生产线,并配备控制台来管理整个生产过程。以下是这座工厂的详细构建过程:1.工厂的基础设施:Ubuntu比喻:Ubuntu是工厂所在的土地和建筑,提供了基础设施和运行环境。作用:提供操作系统环境,支持安装和运行各种工具和框架
- FakeApp 技术浅析(一)
爱研究的小牛
AIGC—深度伪造虚拟现实人工智能AIGC深度学习机器学习
FakeApp是一款早期的深度伪造(Deepfake)工具,最初于2018年发布,用于生成和编辑换脸视频。尽管FakeApp已经不再更新,但它在深度伪造技术的发展中起到了重要作用。1.技术背景与理论基础1.1生成对抗网络(GANs)生成对抗网络(GANs)是深度学习领域中的一种重要模型,由生成器(Generator)和判别器(Discriminator)组成。生成器负责生成逼真的数据(如图像、视频
- DeepSeek 赋能工业软件之全流程方案
爱吃青菜的大力水手
人工智能自动化持续部署语言模型开源
deepseek赋能工业软件之全流程方案之侧重半导体FABdeepseek在工业软件中的应用场景“deepseek”大模型在工业软件领域拥有广泛的应用场景,包括以下几个方面:智能调度:利用深度学习和优化算法,根据实时数据动态调整生产计划和资源分配。它可以综合考虑订单需求、设备状态和产能限制,智能生成最优的生产排程方案,减少等待时间和切换成本。例如在汽车制造工厂,deepseek可根据订单需求和设备
- 深度学习之目标检测的常用标注工具
铭瑾熙
人工智能机器学习深度学习深度学习目标检测目标跟踪
1LabelImgLabelImg是一款开源的图像标注工具,标签可用于分类和目标检测,它是用Python编写的,并使用Qt作为其图形界面,简单好用。注释以PASCALVOC格式保存为XML文件,这是ImageNet使用的格式。此外,它还支持COCO数据集格式。2labelmelabelme是一款开源的图像/视频标注工具,标签可用于目标检测、分割和分类。灵感是来自于MIT开源的一款标注工具Label
- 桌面上有多个球在同时运动,怎么实现球之间不交叉,即碰撞?
换个号韩国红果果
html小球碰撞
稍微想了一下,然后解决了很多bug,最后终于把它实现了。其实原理很简单。在每改变一个小球的x y坐标后,遍历整个在dom树中的其他小球,看一下它们与当前小球的距离是否小于球半径的两倍?若小于说明下一次绘制该小球(设为a)前要把他的方向变为原来相反方向(与a要碰撞的小球设为b),即假如当前小球的距离小于球半径的两倍的话,马上改变当前小球方向。那么下一次绘制也是先绘制b,再绘制a,由于a的方向已经改变
- 《高性能HTML5》读后整理的Web性能优化内容
白糖_
html5
读后感
先说说《高性能HTML5》这本书的读后感吧,个人觉得这本书前两章跟书的标题完全搭不上关系,或者说只能算是讲解了“高性能”这三个字,HTML5完全不见踪影。个人觉得作者应该首先把HTML5的大菜拿出来讲一讲,再去分析性能优化的内容,这样才会有吸引力。因为只是在线试读,没有机会看后面的内容,所以不胡乱评价了。
- [JShop]Spring MVC的RequestContextHolder使用误区
dinguangx
jeeshop商城系统jshop电商系统
在spring mvc中,为了随时都能取到当前请求的request对象,可以通过RequestContextHolder的静态方法getRequestAttributes()获取Request相关的变量,如request, response等。 在jshop中,对RequestContextHolder的
- 算法之时间复杂度
周凡杨
java算法时间复杂度效率
在
计算机科学 中,
算法 的时间复杂度是一个
函数 ,它定量描述了该算法的运行时间。这是一个关于代表算法输入值的
字符串 的长度的函数。时间复杂度常用
大O符号 表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是
渐近 的,它考察当输入值大小趋近无穷时的情况。
这样用大写O()来体现算法时间复杂度的记法,
- Java事务处理
g21121
java
一、什么是Java事务 通常的观念认为,事务仅与数据库相关。 事务必须服从ISO/IEC所制定的ACID原则。ACID是原子性(atomicity)、一致性(consistency)、隔离性(isolation)和持久性(durability)的缩写。事务的原子性表示事务执行过程中的任何失败都将导致事务所做的任何修改失效。一致性表示当事务执行失败时,所有被该事务影响的数据都应该恢复到事务执行前的状
- Linux awk命令详解
510888780
linux
一. AWK 说明
awk是一种编程语言,用于在linux/unix下对文本和数据进行处理。数据可以来自标准输入、一个或多个文件,或其它命令的输出。它支持用户自定义函数和动态正则表达式等先进功能,是linux/unix下的一个强大编程工具。它在命令行中使用,但更多是作为脚本来使用。
awk的处理文本和数据的方式:它逐行扫描文件,从第一行到
- android permission
布衣凌宇
Permission
<uses-permission android:name="android.permission.ACCESS_CHECKIN_PROPERTIES" ></uses-permission>允许读写访问"properties"表在checkin数据库中,改值可以修改上传
<uses-permission android:na
- Oracle和谷歌Java Android官司将推迟
aijuans
javaoracle
北京时间 10 月 7 日,据国外媒体报道,Oracle 和谷歌之间一场等待已久的官司可能会推迟至 10 月 17 日以后进行,这场官司的内容是 Android 操作系统所谓的 Java 专利权之争。本案法官 William Alsup 称根据专利权专家 Florian Mueller 的预测,谷歌 Oracle 案很可能会被推迟。 该案中的第二波辩护被安排在 10 月 17 日出庭,从目前看来
- linux shell 常用命令
antlove
linuxshellcommand
grep [options] [regex] [files]
/var/root # grep -n "o" *
hello.c:1:/* This C source can be compiled with:
- Java解析XML配置数据库连接(DOM技术连接 SAX技术连接)
百合不是茶
sax技术Java解析xml文档dom技术XML配置数据库连接
XML配置数据库文件的连接其实是个很简单的问题,为什么到现在才写出来主要是昨天在网上看了别人写的,然后一直陷入其中,最后发现不能自拔 所以今天决定自己完成 ,,,,现将代码与思路贴出来供大家一起学习
XML配置数据库的连接主要技术点的博客;
JDBC编程 : JDBC连接数据库
DOM解析XML: DOM解析XML文件
SA
- underscore.js 学习(二)
bijian1013
JavaScriptunderscore
Array Functions 所有数组函数对参数对象一样适用。1.first _.first(array, [n]) 别名: head, take 返回array的第一个元素,设置了参数n,就
- plSql介绍
bijian1013
oracle数据库plsql
/*
* PL/SQL 程序设计学习笔记
* 学习plSql介绍.pdf
* 时间:2010-10-05
*/
--创建DEPT表
create table DEPT
(
DEPTNO NUMBER(10),
DNAME NVARCHAR2(255),
LOC NVARCHAR2(255)
)
delete dept;
select
- 【Nginx一】Nginx安装与总体介绍
bit1129
nginx
启动、停止、重新加载Nginx
nginx 启动Nginx服务器,不需要任何参数u
nginx -s stop 快速(强制)关系Nginx服务器
nginx -s quit 优雅的关闭Nginx服务器
nginx -s reload 重新加载Nginx服务器的配置文件
nginx -s reopen 重新打开Nginx日志文件
- spring mvc开发中浏览器兼容的奇怪问题
bitray
jqueryAjaxspringMVC浏览器上传文件
最近个人开发一个小的OA项目,属于复习阶段.使用的技术主要是spring mvc作为前端框架,mybatis作为数据库持久化技术.前台使用jquery和一些jquery的插件.
在开发到中间阶段时候发现自己好像忽略了一个小问题,整个项目一直在firefox下测试,没有在IE下测试,不确定是否会出现兼容问题.由于jquer
- Lua的io库函数列表
ronin47
lua io
1、io表调用方式:使用io表,io.open将返回指定文件的描述,并且所有的操作将围绕这个文件描述
io表同样提供三种预定义的文件描述io.stdin,io.stdout,io.stderr
2、文件句柄直接调用方式,即使用file:XXX()函数方式进行操作,其中file为io.open()返回的文件句柄
多数I/O函数调用失败时返回nil加错误信息,有些函数成功时返回nil
- java-26-左旋转字符串
bylijinnan
java
public class LeftRotateString {
/**
* Q 26 左旋转字符串
* 题目:定义字符串的左旋转操作:把字符串前面的若干个字符移动到字符串的尾部。
* 如把字符串abcdef左旋转2位得到字符串cdefab。
* 请实现字符串左旋转的函数。要求时间对长度为n的字符串操作的复杂度为O(n),辅助内存为O(1)。
*/
pu
- 《vi中的替换艺术》-linux命令五分钟系列之十一
cfyme
linux命令
vi方面的内容不知道分类到哪里好,就放到《Linux命令五分钟系列》里吧!
今天编程,关于栈的一个小例子,其间我需要把”S.”替换为”S->”(替换不包括双引号)。
其实这个不难,不过我觉得应该总结一下vi里的替换技术了,以备以后查阅。
1
所有替换方案都要在冒号“:”状态下书写。
2
如果想将abc替换为xyz,那么就这样
:s/abc/xyz/
不过要特别
- [轨道与计算]新的并行计算架构
comsci
并行计算
我在进行流程引擎循环反馈试验的过程中,发现一个有趣的事情。。。如果我们在流程图的每个节点中嵌入一个双向循环代码段,而整个流程中又充满着很多并行路由,每个并行路由中又包含着一些并行节点,那么当整个流程图开始循环反馈过程的时候,这个流程图的运行过程是否变成一个并行计算的架构呢?
- 重复执行某段代码
dai_lm
android
用handler就可以了
private Handler handler = new Handler();
private Runnable runnable = new Runnable() {
public void run() {
update();
handler.postDelayed(this, 5000);
}
};
开始计时
h
- Java实现堆栈(list实现)
datageek
数据结构——堆栈
public interface IStack<T> {
//元素出栈,并返回出栈元素
public T pop();
//元素入栈
public void push(T element);
//获取栈顶元素
public T peek();
//判断栈是否为空
public boolean isEmpty
- 四大备份MySql数据库方法及可能遇到的问题
dcj3sjt126com
DBbackup
一:通过备份王等软件进行备份前台进不去?
用备份王等软件进行备份是大多老站长的选择,这种方法方便快捷,只要上传备份软件到空间一步步操作就可以,但是许多刚接触备份王软件的客用户来说还原后会出现一个问题:因为新老空间数据库用户名和密码不统一,网站文件打包过来后因没有修改连接文件,还原数据库是好了,可是前台会提示数据库连接错误,网站从而出现打不开的情况。
解决方法:学会修改网站配置文件,大多是由co
- github做webhooks:[1]钩子触发是否成功测试
dcj3sjt126com
githubgitwebhook
转自: http://jingyan.baidu.com/article/5d6edee228c88899ebdeec47.html
github和svn一样有钩子的功能,而且更加强大。例如我做的是最常见的push操作触发的钩子操作,则每次更新之后的钩子操作记录都会在github的控制板可以看到!
工具/原料
github
方法/步骤
- ">的作用" target="_blank">JSP中的作用
蕃薯耀
JSP中<base href="<%=basePath%>">的作用
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
- linux下SAMBA服务安装与配置
hanqunfeng
linux
局域网使用的文件共享服务。
一.安装包:
rpm -qa | grep samba
samba-3.6.9-151.el6.x86_64
samba-common-3.6.9-151.el6.x86_64
samba-winbind-3.6.9-151.el6.x86_64
samba-client-3.6.9-151.el6.x86_64
samba-winbind-clients
- guava cache
IXHONG
cache
缓存,在我们日常开发中是必不可少的一种解决性能问题的方法。简单的说,cache 就是为了提升系统性能而开辟的一块内存空间。
缓存的主要作用是暂时在内存中保存业务系统的数据处理结果,并且等待下次访问使用。在日常开发的很多场合,由于受限于硬盘IO的性能或者我们自身业务系统的数据处理和获取可能非常费时,当我们发现我们的系统这个数据请求量很大的时候,频繁的IO和频繁的逻辑处理会导致硬盘和CPU资源的
- Query的开始--全局变量,noconflict和兼容各种js的初始化方法
kvhur
JavaScriptjquerycss
这个是整个jQuery代码的开始,里面包含了对不同环境的js进行的处理,例如普通环境,Nodejs,和requiredJs的处理方法。 还有jQuery生成$, jQuery全局变量的代码和noConflict代码详解 完整资源:
http://www.gbtags.com/gb/share/5640.htm jQuery 源码:
(
- 美国人的福利和中国人的储蓄
nannan408
今天看了篇文章,震动很大,说的是美国的福利。
美国医院的无偿入院真的是个好措施。小小的改善,对于社会是大大的信心。小孩,税费等,政府不收反补,真的体现了人文主义。
美国这么高的社会保障会不会使人变懒?答案是否定的。正因为政府解决了后顾之忧,人们才得以倾尽精力去做一些有创造力,更造福社会的事情,这竟成了美国社会思想、人
- N阶行列式计算(JAVA)
qiuwanchi
N阶行列式计算
package gaodai;
import java.util.List;
/**
* N阶行列式计算
* @author 邱万迟
*
*/
public class DeterminantCalculation {
public DeterminantCalculation(List<List<Double>> determina
- C语言算法之打渔晒网问题
qiufeihu
c算法
如果一个渔夫从2011年1月1日开始每三天打一次渔,两天晒一次网,编程实现当输入2011年1月1日以后任意一天,输出该渔夫是在打渔还是在晒网。
代码如下:
#include <stdio.h>
int leap(int a) /*自定义函数leap()用来指定输入的年份是否为闰年*/
{
if((a%4 == 0 && a%100 != 0
- XML中DOCTYPE字段的解析
wyzuomumu
xml
DTD声明始终以!DOCTYPE开头,空一格后跟着文档根元素的名称,如果是内部DTD,则再空一格出现[],在中括号中是文档类型定义的内容. 而对于外部DTD,则又分为私有DTD与公共DTD,私有DTD使用SYSTEM表示,接着是外部DTD的URL. 而公共DTD则使用PUBLIC,接着是DTD公共名称,接着是DTD的URL.
私有DTD
<!DOCTYPErootSYST