Droupout与Batch Normalization都是深度学习常用且基础的训练技巧了。本文将从理论和实践两个角度分布其特点和细节。
2012年,Hinton在其论文中提出Dropout。当一个复杂的前馈神经网络被训练在小的数据集时,容易造成过拟合。为了防止过拟合,可以通过阻止特征检测器的共同作用来提高神经网络的性能。
Droupout是一种针对深度学习广泛应用的正则化技术。在每次迭代时随机关闭一些神经单元,随着迭代的进行,由于其他神经元可能在任何时候都被关闭,因此神经元对其他特定神经元的激活变得不那么敏感。
从数学上来说,神经网络层训练过程中使用的标准 Dropout 的行为可以被写作:
其中 f(⋅)
为激活函数,x 是该层的输入,W 是该层的权值矩阵,y为该层的输出,而 m 则为该层的 Dropout 掩膜(mask),mask 中每个元素为 1 的概率为 p
。在测试阶段,该层的输出可以被写作:
Q&A
为什么说Dropout可以解决过拟合?
(1)取平均的作用。dropout掉不同的隐藏神经元就类似在训练不同的网络,随机删掉一半隐藏神经元导致网络结构已经不同,整个dropout过程就相当于对很多个不同的神经网络取平均。而不同的网络产生不同的过拟合,一些互为“反向”的拟合相互抵消就可以达到整体上减少过拟合。
(2)减少神经元之间复杂的共适应关系: 因为dropout程序导致两个神经元不一定每次都在一个dropout网络中出现。这样权值的更新不再依赖于有固定关系的隐含节点的共同作用,阻止了某些特征仅仅在其它特定特征下才有效果的情况 。迫使网络去学习更加鲁棒的特征 ,这些特征在其它的神经元的随机子集中也存在。换句话说假如我们的神经网络是在做出某种预测,它不应该对一些特定的线索片段太过敏感,即使丢失特定的线索,它也应该可以从众多其它线索中学习一些共同的特征。从这个角度看dropout就有点像L1,L2正则,减少权重使得网络对丢失特定神经元连接的鲁棒性提高。
(3)Dropout类似于性别在生物进化中的角色:物种为了生存往往会倾向于适应这种环境,环境突变则会导致物种难以做出及时反应,性别的出现可以繁衍出适应新环境的变种,有效的阻止过拟合,即避免环境改变时物种可能面临的灭绝。
类比于Bagging方法,Dropout可被认为是一种实用的大规模深度神经网络的模型集成算法。这是由于传统意义上的Bagging涉及多个模型的同时训练与测试评估,当网络与参数规模庞大时,这种集成方式需要消耗大量的运算时间与空间。Dropout在小批量级别上的操作,提供了一种轻量级的Bagging集成近似,能够实现指数级数量神经网络的训练与评测。
Dropout缺点
明确定义的损失函数每一次迭代都会下降,而dropout每一次都会随机删除节点,也就是说每一次训练的网络都是不同的,损失函数不再被明确地定义,在某种程度上很难计算,我们失去了调试工具。
如何使用 Dropout
Dropout存在两个版本:Vanilla Dropout 和 Inverted Dropout。(这里只对Inverted Dropout进行说明)
对于inverted dropout,在训练阶段期间对激活值进行缩放,而测试阶段保持不变。这是因为当模型使用了dropout layer,训练的时候只有占比为p
的隐藏层单元参与训练,那么在预测的时候,如果所有的隐藏层单元都需要参与进来,则得到的结果是训练时的1p倍 ,为了避免这种情况,就需要测试的时候将输出结果乘以p 使下一层的输入规模保持不变。而利用inverted dropout,我们可以在训练的时候直接将dropout后留下的权重扩大1p
倍,这样就可以使结果的scale保持不变,而在预测的时候也不用做额外的操作了。
ResNet为什么不用Dropout?
Dropout与BN不兼容;同时,BN在训练过程对每个单个样本的forward均引入多个样本(Batch个)的统计信息,相当于自带一定噪音,起到正则效果,所以也就基本消除了Dropout的必要。
这里使用numpy实现了一个普通的神经网络如何在训练中,利用Dropout的keep_out进行前向和反向传播。
import numpy as np
def forward_propagation_with_dropout(X, parameters, keep_prob=0.5):
"""
Implements the forward propagation: LINEAR -> RELU + DROPOUT -> LINEAR -> RELU + DROPOUT -> LINEAR -> SIGMOID.
"""
np.random.seed(1)
# retrieve parameters
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
W3 = parameters["W3"]
b3 = parameters["b3"]
Z1 = np.dot(W1, X) + b1
A1 = relu(Z1)
D1 = np.random.rand(A1.shape[0], A1.shape[1])
D1 = (D1 < keep_prob)
A1 = A1 * D1
A1 = A1 / keep_prob
Z2 = np.dot(W2, A1) + b2
A2 = relu(Z2)
D2 = np.random.rand(A2.shape[0], A1.shape[1])
D2 = (D2 < keep_prob)
A2 = A2 * D2
A2 = A2 / keep_prob
Z3 = np.dot(W3, A2) + b3
A3 = sigmoid(Z3)
cache = (Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3)
return A3, cache
#GRADED FUNCTION: backward_propagation_with_dropout
def backward_propagation_with_dropout(X, Y, cache, keep_prob):
"""
Implements the backward propagation of our baseline model to which we added dropout.
"""
m = X.shape[1]
(Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3) = cache
dZ3 = A3 - Y
dW3 = 1. / m * np.dot(dZ3, A2.T)
db3 = 1. / m * np.sum(dZ3, axis=1, keepdims=True)
dA2 = np.dot(W3.T, dZ3)
dA2 *= D2
dA2 = dA2 / keep_prob
dZ2 = np.multiply(dA2, np.int64(A2 > 0))
dW2 = 1. / m * np.dot(dZ2, A1.T)
db2 = 1. / m * np.sum(dZ2, axis=1, keepdims=True)
dA1 = np.dot(W2.T, dZ2)
dA1 *= D1
dA1 /= keep_prob
dZ1 = np.multiply(dA1, np.int64(A1 > 0))
dW1 = 1. / m * np.dot(dZ1, X.T)
db1 = 1. / m * np.sum(dZ1, axis=1, keepdims=True)
gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3, "dA2": dA2,
"dZ2": dZ2, "dW2": dW2, "db2": db2, "dA1": dA1,
"dZ1": dZ1, "dW1": dW1, "db1": db1}
return gradients
Batch Normalization
Batch Normalization, 批标准化, 和普通的数据标准化类似, 是将分散的数据统一的一种做法, 也是优化神经网络的一种方法.
在深度学习中,由于问题的复杂性,尤其是对深层神经网络的训练调参是困难且复杂的。在这个过程中,我们需要去尝试不同的学习率、初始化参数方法(例如Xavier初始化)等方式来帮助我们的模型加速收敛。深度神经网络之所以如此难训练,其中一个重要原因就是网络中层与层之间存在高度的关联性与耦合性。在训练中,网络中层与层之间的关联性会导致如下的状况:随着训练的进行,网络中的参数也随着梯度下降在不停更新。一方面,当底层网络中参数发生微弱变化时,由于每一层中的线性变换与非线性激活映射,这些微弱变化随着网络层数的加深而被放大(类似蝴蝶效应);另一方面,参数的变化导致每一层的输入分布会发生改变,进而上层的网络需要不停地去适应这些分布变化,使得我们的模型训练变得困难。上述这一现象叫做Internal Covariate Shift。
Batch Normalization的原论文作者给了Internal Covariate Shift一个较规范的定义:
在深层网络训练的过程中,由于网络中参数变化而引起内部结点数据分布发生变化的这一过程被称作Internal Covariate Shift。
Internal Covariate Shift会带来什么问题?
(1)上层网络需要不停调整来适应输入数据分布的变化,导致网络学习速度的降低
(2)网络的训练过程容易陷入梯度饱和区,减缓网络收敛速度
当我们在神经网络中采用饱和激活函数(saturated activation function)时,例如sigmoid,tanh激活函数,很容易使得模型训练陷入梯度饱和区(saturated regime)。对于激活函数梯度饱和问题,有两种解决思路。第一种就是更为非饱和性激活函数,例如线性整流函数ReLU可以在一定程度上解决训练进入梯度饱和区的问题。另一种思路是,我们可以让激活函数的输入分布保持在一个稳定状态来尽可能避免它们陷入梯度饱和区,这也就是Normalization的思路。
那我们如何减缓Internal Covariate Shift?ICS产生的原因是由于参数更新带来的网络中每一层输入值分布的改变,并且随着网络层数的加深而变得更加严重,因此我们可以通过固定每一层网络输入值的分布来对减缓ICS问题。
(1)白化(Whitening)。白化是对输入数据分布进行变换,进而达到以下两个目的:
第一,使得输入特征分布具有相同的均值与方差。其中PCA白化保证了所有特征分布均值为0,方差为1;而ZCA白化则保证了所有特征分布均值为0,方差相同;
第二,去除特征之间的相关性。通过白化操作,我们可以减缓ICS的问题,进而固定了每一层网络输入分布,加速网络训练过程的收敛。
(2)Batch Normalization。白化过程计算成本太高,并且由于改变了网络每一层的分布,因而改变了网络层中本身数据的表达能力。底层网络学习到的参数信息会被白化操作丢失掉。
在深度学习中,由于采用full batch的训练方式对内存要求较大,且每一轮训练时间过长;我们一般都会采用对数据做划分,用mini-batch对网络进行训练。因此,Batch Normalization也就在mini-batch的基础上进行计算。
通过对每一个神经元输出值减去一个batch的均值,除以方差,我们可以用更加简化的方式来对数据进行规范化,即:
其中ϵ是为了防止方差为0产生无效计算。
使得每一层的输入每个特征的分布均值为0,方差为1。但这样但却导致了数据表达能力的缺失。也就是我们通过变换操作改变了原有数据的信息表达(representation ability of the network),使得底层网络学习到的参数信息丢失。另一方面,通过让每一层的输入分布均值为0,方差为1,会使得输入在经过sigmoid或tanh激活函数时,容易陷入非线性激活函数的线性区域。
因此,BN又引入了两个可学习(learnable)的参数γ
与β这两个参数的引入是为了恢复数据本身的表达能力,对规范化后的数据进行线性变换,即:
特别地,当
时,可以实现等价变换(identity transform)并且保留了原始输入特征的分布信息。
通过上面的步骤,我们就在一定程度上保证了输入数据的表达能力。
以上就是整个Batch Normalization在模型训练中的算法和思路。
补充: 在进行normalization的过程中,由于我们的规范化操作会对减去均值,因此,偏置项 b
可以被忽略掉或可以被置为0
总结一下,BN的作用与问题:
BN的作用:
(1)允许较大的学习率;
(2)减弱对初始化的强依赖性
(3)保持隐藏层中数值的均值、方差不变,让数值更稳定,为后面网络提供坚实的基础;
(4)有轻微的正则化作用(相当于给隐藏层加入噪声,类似Dropout)
BN存在的问题:
(1)每次是在一个batch上计算均值、方差,如果batch size太小,则计算的均值、方差不足以代表整个数据分布。
(2)batch size太大:会超过内存容量;需要跑更多的epoch,导致总训练时间变长;会直接固定梯度下降的方向,导致很难更新。
测试阶段如何使用Batch Normalization?
利用BN训练好模型后,我们保留了每组mini-batch训练数据在网络中每一层的
此时我们使用整个样本的统计量来对Test数据进行归一化,具体来说使用均值与方差的无偏估计:
得到每个特征的均值与方差的无偏估计后,我们对test数据采用同样的normalization方法:
另外,除了采用整体样本的无偏估计外。吴恩达在Coursera上的Deep Learning课程指出可以对train阶段每个batch计算的mean/variance采用指数加权平均来得到test阶段mean/variance的估计。
BN训练时为什么不用全量训练集的均值和方差呢?
因为用全量训练集的均值和方差容易过拟合,对于BN,其实就是对每一批数据进行归一化到一个相同的分布,而每一批数据的均值和方差会有一定的差别,而不是用固定的值,这个差别实际上能够增加模型的鲁棒性,也会在一定程度上减少过拟合。
也正是因此,BN一般要求将训练集完全打乱,并用一个较大的batch值,否则,一个batch的数据无法较好得代表训练集的分布,会影响模型训练的效果。
Batch Normalization的优势
Batch Normalization在实际工程中被证明了能够缓解神经网络难以训练的问题,BN具有的优势可以总结为以下几点:
(1)BN使得网络中每层输入数据的分布相对稳定,加速模型学习速度
BN通过规范化与线性变换使得每一层网络的输入数据的均值与方差都在一定范围内,使得后一层网络不必不断去适应底层网络中输入的变化,从而实现了网络中层与层之间的解耦,允许每一层进行独立学习,有利于提高整个神经网络的学习速度。
(2)BN使得模型对网络中的参数不那么敏感,简化调参过程,使得网络学习更加稳定
在神经网络中,我们经常会谨慎地采用一些权重初始化方法(例如Xavier)或者合适的学习率来保证网络稳定训练。
当学习率设置太高时,会使得参数更新步伐过大,容易出现震荡和不收敛。但是使用BN的网络将不会受到参数数值大小的影响。在使用Batch Normalization之后,抑制了参数微小变化随着网络层数加深被放大的问题,使得网络对参数大小的适应能力更强,此时我们可以设置较大的学习率而不用过于担心模型divergence的风险。
(3)BN允许网络使用饱和性激活函数(例如sigmoid,tanh等),缓解梯度消失问题
在不使用BN层的时候,由于网络的深度与复杂性,很容易使得底层网络变化累积到上层网络中,导致模型的训练很容易进入到激活函数的梯度饱和区;通过normalize操作可以让激活函数的输入数据落在梯度非饱和区,缓解梯度消失的问题;另外通过自适应学习γ
与β
又让数据保留更多的原始信息。
(4)BN具有一定的正则化效果
在Batch Normalization中,由于我们使用mini-batch的均值与方差作为对整体训练样本均值与方差的估计,尽管每一个batch中的数据都是从总体样本中抽样得到,但不同mini-batch的均值与方差会有所不同,这就为网络的学习过程中增加了随机噪音,与Dropout通过关闭神经元给网络训练带来噪音类似,在一定程度上对模型起到了正则化的效果。
Batch Normalization训练注意事项
tf.layers.batch_normalization接口中training参数非常重要。当我们训练时,要设置为True,保证在训练过程中使用的是mini-batch的统计量进行normalization;在Inference阶段,使用False,也就是使用总体样本的无偏估计。另外,当self.use_batch_norm为True时,要使用tf.control_dependencies保证模型正常训练。
Batch-normalized 应该放在非线性激活层的前面还是后面?
在BN的原始论文中,BN是放在非线性激活层前面的。但目前在实践上,倾向于把BN放在ReLU后面。 Batch-Normalization可以视作对传给隐藏层的输入的normalization。BN层的作用机制也许是通过平滑隐藏层输入的分布,帮助随机梯度下降的进行,缓解随机梯度下降权重更新对后续层的负面影响。因此,实际上,无论是放非线性激活之前,还是之后,也许都能发挥这个作用。只不过,取决于具体激活函数的不同,效果也许有一点差别(比如,对sigmoid和tanh而言,放非线性激活之前,也许顺便还能缓解sigmoid/tanh的梯度衰减问题,而对ReLU而言,这个平滑作用经ReLU“扭曲”之后也许有所衰弱)。
BN和Dropout共同使用时会出现的问题
BN和Dropout单独使用都能减少过拟合并加速训练速度,但如果一起使用的话并不会产生1+1>2的效果,相反可能会得到比单独使用更差的效果。
理解 Dropout 与 BN 之间冲突的关键是网络状态切换过程中存在神经方差的(neural variance)不一致行为。试想若有图一中的神经响应 X,当网络从训练转为测试时,Dropout 可以通过其随机失活保留率(即 p)来缩放响应,并在学习中改变神经元的方差,而 BN 仍然维持 X 的统计滑动方差。这种方差不匹配可能导致数值不稳定(见下图中的红色曲线)。而随着网络越来越深,最终预测的数值偏差可能会累计,从而降低系统的性能。简单起见,作者们将这一现象命名为「方差偏移」。事实上,如果没有 Dropout,那么实际前馈中的神经元方差将与 BN 所累计的滑动方差非常接近(见下图中的蓝色曲线),这也保证了其较高的测试准确率。
BN和Dropout共同使用时会出现的问题
作者采用了两种策略来探索如何打破这种局限。一个是在所有 BN 层后使用 Dropout,另一个就是修改 Dropout 的公式让它对方差并不那么敏感,就是高斯Dropout。
第一个方案比较简单,把Dropout放在所有BN层的后面就可以了,这样就不会产生方差偏移的问题,但实则有逃避问题的感觉。
第二个方案来自Dropout原文里提到的一种高斯Dropout,是对Dropout形式的一种拓展。作者进一步拓展了高斯Dropout,提出了一个均匀分布Dropout,这样做带来了一个好处就是这个形式的Dropout(又称为“Uout”)对方差的偏移的敏感度降低了,总得来说就是整体方差偏地没有那么厉害了。
论文:Improving neural networks by preventing co-adaptation of feature detectors(https://arxiv.org/abs/1207.0580v1)
论文:Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift(https://arxiv.org/abs/1502.03167v3)
论文:Understanding the Disharmony between Dropout and Batch Normalization by Variance Shift(https://arxiv.org/abs/1801.05134)
深度学习中Dropout原理解析
Batch Normalization原理与实战
Batch-normalized 应该放在非线性激活层的前面还是后面?
BN和Dropout在训练和测试时的差别