- Java集合面试“送命题”合集!这15个问题,你能答对几个?
java干货
java面试python
问题1:ConcurrentHashMap和Collections.synchronizedMap()有什么区别?✅答案:两者都提供线程安全的Map,但实现方式截然不同:•ConcurrentHashMap是为并发而设计的。它使用分段锁(Java7及以前)或CAS+节点级锁(Java8+),允许在不锁定整个Map的情况下进行并发的读和写,性能更高。•Collections.synchronized
- STM32+ESP8266连接网络的几种方法
op:)
stm32stm32嵌入式
1、SmartConfig上篇文章提到的2、连接固定的路由在程序中写死;例如:voidESP8266_Init_Fixed_WiFi(void){ESP8266_Clear();/*AT测试*/printf("0.AT\r\n");ESP8266_SendCmd("AT\r\n","");delay_ms(500);/*重启*/printf("1.RST\r\n");ESP8266_SendCmd
- SocketDebuggerFree-v2_00 的使用教程
yunquantong
socket
下面是SocketDebuggerFree-v2_00的使用教程,帮助你从零开始使用它来测试与调试网络Socket连接。什么是SocketDebuggerFree-v2_00?SocketDebuggerFree-v2_00是一款免费的网络调试工具,可以模拟TCP/UDP服务器或客户端,帮助你测试网络应用程序,分析数据传输,定位网络问题。功能概览✅模拟TCP/UDPServer或Client✅实时
- [redis系列] redis脚本
en-route
redis数据库
介绍RedisLua脚本功能使得用户能够在Redis服务器端执行自定义的Lua脚本,从而实现更高效、更灵活的数据操作。Lua脚本运行在Redis服务器内部,这意味着你可以减少客户端与服务器之间的通信开销,并且可以通过原子操作确保多个Redis命令的执行一致性。组合功能:Lua脚本能够将Redis中的简单命令组合起来,从而实现复杂的业务需求,避免多次网络往返。数据操作原子性:通过Lua脚本,开发者可
- 生成式人工智能实战 | 深度卷积生成对抗网络(Deep Convolutional Generative Adversarial Network, DCGAN)
盼小辉丶
生成式人工智能实战150讲人工智能生成对抗网络神经网络
生成式人工智能实战|深度卷积生成对抗网络0.前言1.模型与数据集分析1.1模型分析1.2数据集介绍2.构建DCGAN生成人脸图像2.1数据处理2.2模型构建2.3模型训练0.前言深度卷积生成对抗网络(DeepConvolutionalGenerativeAdversarialNetworks,DCGAN)是基于生成对抗网络(ConvolutionalGenerativeAdversarialNet
- Python代理池的构建与应用:实现高效爬虫与防封禁策略
程序员威哥
python爬虫开发语言
在进行大规模网络数据抓取时,IP封禁是最常见的反爬虫手段之一。为了应对这一挑战,代理池成为了一个重要工具。通过构建代理池,爬虫程序可以随机切换代理IP,避免同一IP被频繁访问而导致封禁,确保数据抓取任务的稳定性和持续性。本文将详细介绍如何使用Python构建一个高效的代理池,并结合实际应用场景,讲解如何使用代理池提升爬虫的抓取能力和防封禁策略。一、代理池的工作原理代理池的基本工作原理是,爬虫请求时
- 由数据泄露引发业务崩塌的HTTP代理危险
彬彬醤
http网络协议网络tcp/ipweb安全大数据macos
HTTP代理作为跨地域访问的常用工具,被广泛应用于跨境电商、数据采集、内容访问等场景。然而,其明文传输特性与监管漏洞,正成为数据安全与业务稳定的隐形杀手。某跨境电商团队因使用廉价HTTP代理,导致500+账号被亚马逊封禁;某企业员工通过公共代理访问内部系统,引发数据泄露事故——这些案例揭示:不当使用HTTP代理,可能让便捷变成灾难。五大核心风险解析1.不安全的数据传输传统HTTP代理工作于OSI模
- Fiddler抓包工具在多端调试中的实战应用:结合Postman与Charles构建调试工作流
2501_91600747
httpudphttpswebsocket网络安全网络协议tcp/ip
在如今前后端分离、接口驱动开发逐渐成为主流的背景下,开发者越来越依赖于各类调试工具,以应对复杂的网络请求管理、多设备调试和跨团队协作等问题。而在诸多网络分析工具中,Fiddler抓包工具以其功能全面、扩展灵活、支持HTTPS抓包和断点调试等特性,在开发者圈中拥有稳定的口碑。本文将从一个更贴近日常开发流程的角度,探讨如何在多端调试、接口测试、数据模拟等环节中,灵活运用Fiddler,并与Postma
- 手机控制载货汽车一键启动无钥匙进入广泛应用
移动管家载货汽车一键启动无钥匙进入手机控车系统,该系统广泛应用于物流运输、工程作业等货车场景,为车主提供了高效、便捷的启动和熄火解决方案,体现了科技进步对物流行业的积极影响核心功能:简化启动流程,提高便捷性与安全性。无钥匙进入:车主携带智能钥匙靠近车辆,车门自动解锁并解除防盗;离开时自动上锁防盗。一键启动:踩下刹车,按下一键启动按钮即可启动或熄火车辆,替代传统钥匙。智能控制:
- 高通 QCS8550 大模型性能深度解析:从算力基准到场景实测的全维度 Benchmark
伊利丹~怒风
Qualcomm人工智能AI编程pythonarm自然语言处理
前言在人工智能技术狂飙突进的时代,大模型正以前所未有的速度重塑各行业生态,从智能客服到多模态交互,从边缘推理到端侧部署,其应用场景不断拓展。而这一切革新的背后,离不开底层硬件的强力支撑。高通QCS8550作为面向下一代智能设备的旗舰级计算平台,凭借高达48TOPS的AI算力与先进的第七代高通AI引擎,在大模型性能表现上极具竞争力。其异构多核架构不仅能高效处理复杂的神经网络计算,还通过软硬件协同优化
- 【iOS越狱开发】iOS越狱步骤1之环境搭建
JR_Wang2491
MAC移动苹果iosiosiphoneipad
这段时间都是研究iOS越狱事情,如今我会一点一点的把自己学到的遇到的问题会陆续编写出来,让大家一起讨论,也让做逆向的朋友有个交流平台机会,废话不多说!!一、学习条件至少1~2年iOS开发经验基本UI界面操作多线程网络基本操作数据储存基本操作一台苹果手机,建议至少iPhone5S(因为从5S开始支持arm64架构)或者至少是iPadAir、iPadmini2等支持arm64架构的设备系统至少iOS8
- DHCP协议---动态主机配置协议
W111115_
计算机网络---HCIAlinux网络运维网络协议服务器
什么是DHCPDHCP(DynamicHostConfigurationProtocol,动态主机配置协议),前身是BOOTP协议,是一个局域网的网络协议,使用UDP协议工作,统一使用两个IANA分配的端口:67(服务器端),68(客户端)。DHCP通常被用于局域网环境,主要作用是集中的管理、分配IP地址,使client动态的获得IP地址、Gateway地址、DNS服务器地址等信息,并能够提升地址
- Next.js漏洞风暴:CVE-2025-29927全网爆发,你的项目躺枪了吗?
前端菜鸡日常
服务端渲染javascript开发语言后端node.js
Next.js中间件鉴权绕过漏洞(CVE-2025-29927)全面解析与应急指南近日,Next.js框架曝出一个高危安全漏洞CVE-2025-29927,该漏洞允许攻击者通过构造特殊HTTP请求头绕过中间件的安全控制,可能导致未授权访问、数据泄露等严重后果。本文将全面剖析该漏洞的技术细节、影响范围、检测方法及修复方案,帮助开发者快速评估风险并采取应对措施。漏洞概述与技术原理CVE-2025-29
- 常见的会话劫持攻击是指什么?
wanhengidc
安全网络web安全
会话劫持攻击是一种常见的网络安全攻击,恶意攻击者通过窃取用户的会话标识符号来接管用户的会话,当攻击者或者有效的会话标识符,那么就可以借取正常用户的数据信息,来访问目标用户的账号,并进行各种操作,来修改或者盗取重要的数据信息,以此来给用户造成巨大的经济损失。所以企业对于会话劫持攻击,可以选择定期更新和修补系统漏洞来保护用户的数据安全,及时更新操作系统、应用程序和安全组件,以此来修复已知的服务器安全漏
- 卷积神经网络(Convolutional Neural Network, CNN)
不想秃头的程序
神经网络语音识别人工智能深度学习网络卷积神经网络
卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种专门用于处理图像、视频等网格数据的深度学习模型。它通过卷积层自动提取数据的特征,并利用空间共享权重和池化层减少参数量和计算复杂度,成为计算机视觉领域的核心技术。以下是CNN的详细介绍:一、核心思想CNN的核心目标是从图像中自动学习层次化特征,并通过空间共享权重和平移不变性减少参数量和计算成本。其关键组件包括:卷积层(
- ResNet(Residual Network)
不想秃头的程序
神经网络语音识别人工智能深度学习网络残差网络神经网络
ResNet(ResidualNetwork)是深度学习中一种经典的卷积神经网络(CNN)架构,由微软研究院的KaimingHe等人在2015年提出。它通过引入残差连接(SkipConnection)解决了深度神经网络中的梯度消失问题,使得网络可以训练极深的模型(如上百层),并在图像分类、目标检测、语义分割等任务中取得了突破性成果。以下是ResNet的详细介绍:一、核心思想ResNet的核心创新是
- P25:LSTM实现糖尿病探索与预测
?Agony
lstm人工智能rnn
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊一、相关技术1.LSTM基本概念LSTM(长短期记忆网络)是RNN(循环神经网络)的一种变体,它通过引入特殊的结构来解决传统RNN中的梯度消失和梯度爆炸问题,特别适合处理序列数据。结构组成:遗忘门:决定丢弃哪些信息,通过sigmoid函数输出0-1之间的值,表示保留或遗忘的程度。输入门:决定更新哪些信息,同样通过sigmoid函数控制更新
- <script setup> 语法糖
前端岳大宝
前端框架Vuevue.js前端javascript
下面,我们来系统的梳理关于Vue3语法糖的基本知识点:一、核心概念1.1什么是?是Vue3中CompositionAPI的编译时语法糖,它通过简化组件声明方式,显著减少样板代码,提供更符合直觉的开发体验。1.2设计目标与优势目标实现方式优势减少样板代码自动暴露顶层绑定代码更简洁提升开发体验更自然的响应式写法开发更高效更好的类型支持原生TypeScript集成类型安全编译时优化编译阶段处理运行时更高
- ArkTS与仓颉语言的深度解析(鸿蒙操作系统多设备)
爱学习的小齐哥哥
仓颉华为仓颉HarmonyOS5
一、引言随着物联网和智能设备的飞速发展,多设备协同开发成为当前软件开发领域的重要课题。鸿蒙操作系统作为面向全场景的分布式操作系统,为开发者提供了ArkTS和仓颉语言两种强大的开发工具,助力实现高效的多设备应用开发。本文将全面剖析这两种语言在鸿蒙多设备开发中的应用,探讨其优势、开发环境、实现一次开发多端部署的方法以及在不同设备上的性能表现和适配策略,并结合智能驾驶应用场景进行实例分析。二、ArkTS
- FB-OCC: 3D Occupancy Prediction based on Forward-BackwardView Transformation
justtoomuchforyou
智驾
NVidia,CVPR20233DOccupancyPredictionChallengeworkshoppaper:https://arxiv.org/pdf/2307.1492code:https://github.com/NVlabs/FB-BEV大参数量imagebackboneInternImage-H,1B外部数据集预训练:object365nuscenes:有点云label,强化网络
- [学习] C语言编程中线程安全的实现方法(示例)
极客不孤独
学习c语言安全
C语言编程中线程安全的实现方法在多线程编程中,线程安全(ThreadSafety)是一个非常重要的概念。当多个线程同时访问共享资源时,如果没有合理的同步机制,就可能导致数据竞争、死锁甚至程序崩溃。本文将详细介绍在C语言中如何实现线程安全的几种主要方式,并提供可以实际运行的代码示例。文章目录C语言编程中线程安全的实现方法一、什么是线程安全?二、C语言中线程安全的实现方式方法一:互斥锁(Mutex)✅
- PillarNet: Real-Time and High-PerformancePillar-based 3D Object Detection
justtoomuchforyou
目标检测人工智能计算机视觉智驾
ECCV2022paper:[2205.07403]PillarNet:Real-TimeandHigh-PerformancePillar-based3DObjectDetectioncode:https://github.com/VISION-SJTU/PillarNet-LTS纯点云基于pillar3D检测模型网络比较SECOND基于voxel,one-stage,基于sparse3Dc
- 如何在FastAPI中打造坚不可摧的Web安全防线?
url:/posts/9d6200ae7ce0a1a1a523591e3d65a82e/title:如何在FastAPI中打造坚不可摧的Web安全防线?date:2025-06-28T08:37:03+08:00lastmod:2025-06-28T08:37:03+08:00author:cmdragonsummary:Web安全三要素包括机密性、完整性和可用性。机密性通过加密算法保护数据传输和
- PCDN如何提升网络流量的传输效率
数据库
PCDN如何提升网络流量的传输效率在当今数字化时代,网络流量的快速增长对传统的CDN(内容分发网络)提出了更高要求。PCDN(P2PCDN)作为一种创新的内容分发技术,通过利用边缘节点的带宽资源,显著提升了宽带流量的传输效率,为用户带来更流畅的网络体验。分布式节点优化宽带流量传输传统CDN依赖中心化服务器分发内容,当用户请求激增时,容易导致服务器负载过高,影响宽带流量的传输速度。PCDN则采用分布
- 【网络】Linux 内核优化实战 - net.core.rmem_max
锅锅来了
Linux性能优化原理和实战网络linux运维
目录参数作用与原理默认值与查看方法调整场景与方法适用场景调整方法与其他参数的协同性能影响与注意事项典型案例总结net.core.rmem_max是Linux内核中控制套接字接收缓冲区(ReceiveBuffer)最大允许值的参数。它与net.core.rmem_default(默认值)共同决定了网络数据接收的性能上限和内存使用策略。以下是详细解析:参数作用与原理核心功能:限制单个套接字接收缓冲区的
- MCP-Proxy:开发多LLM & 多MCP 支持并安全访问MCP Server的秘密
IT古董
技术杂谈安全MCPMCP-Proxy
在构建多模型、多协议、可控可信的大模型接入平台时,MCP-Proxy扮演着关键中枢。它不仅要支持多个LLM接入,还要保障对后端MCPServer的安全访问、请求审计、能力切换与资源隔离。什么是MCP/MCP-Proxy?MCP(ModelCapabilityProtocol)是新一代模型能力调用协议,类似于OpenAI的API,但可支持:多厂商大模型(OpenAI、DeepSeek、Yi、Chat
- Linux I/O 文件操作详解:从系统调用到实际工程应用
平凡灵感码头
linux学习linux运维服务器
一、写在前面在Linux或任何类Unix操作系统中,文件是一切的核心——无论是硬盘上的文本文件,还是串口设备、GPIO寄存器、甚至网络接口,几乎都被抽象为“文件”。理解Linux下的I/O文件操作机制,不仅是嵌入式开发的基础,也是进行系统编程与底层控制的关键。二、I/O的本质:一切皆文件Linux将外设抽象成文件的方式,统一了对各种资源的操作模型。你可以用open打开串口设备/dev/ttyS0,
- Python爬虫实战:爬取知乎问答与用户信息
Python爬虫项目
python爬虫php数据分析开发语言开源
简介随着网络信息量的爆炸,如何有效获取有价值的内容,成为了数据分析、机器学习等领域的基础之一。爬虫作为数据采集的基本工具之一,常常被用来获取互联网上的公开数据。在这篇博客中,我们将结合最新的Python爬虫技术,详细讲解如何爬取知乎问答与用户信息。本文将会介绍:Python爬虫的基础知识知乎问答网页结构分析使用Python进行知乎数据爬取爬取知乎问答内容与用户信息如何处理和存储爬取的数据使用最新的
- 【机器学习&深度学习】反向传播机制
目录一、一句话定义二、类比理解三、为什重要?四、用生活例子解释:神经网络=烹饪机器人4.1第一步:尝一口(前向传播)4.2第二步:倒着推原因(反向传播)五、换成人工智能流程说一遍六、图示类比:找山顶(最优参数)七、总结一句人话八、PyTorch代码示例:亲眼看到每一层的梯度九、梯度=损失函数对参数的偏导数十、类比总结反向传播(Backpropagation)是神经网络中训练过程的核心机制,它就像“
- 【网络】Linux 内核优化实战 - net.ipv4.tcp_rmem 和 net.core.rmem_default 关系
锅锅来了
Linux性能优化原理和实战网络linuxtcp/ip
net.ipv4.tcp_rmem和net.core.rmem_default都是Linux内核中控制网络接收缓冲区的参数,但它们的作用范围、优先级和使用场景存在明显区别。以下是详细对比:核心区别参数net.ipv4.tcp_rmemnet.core.rmem_default作用协议仅针对TCP协议针对所有网络协议(TCP、UDP等)参数类型三元组:mindefaultmax单个值:默认缓冲区大小
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号