在C#下使用TensorFlow.NET训练自己的数据集

在C#下使用TensorFlow.NET训练自己的数据集

今天,我结合代码来详细介绍如何使用 SciSharp STACK 的 TensorFlow.NET 来训练CNN模型,该模型主要实现 图像的分类 ,可以直接移植该代码在 CPUGPU 下使用,并针对你们自己本地的图像数据集进行训练和推理。TensorFlow.NET是基于 **.NET Standard **框架的完整实现的TensorFlow,可以支持 .NET Framework.NET CORE , TensorFlow.NET 为广大.NET开发者提供了完美的机器学习框架选择。

SciSharp STACK:https://github.com/SciSharp

什么是TensorFlow.NET?

TensorFlow.NET 是 SciSharp STACK 开源社区团队的贡献,其使命是打造一个完全属于.NET开发者自己的机器学习平台,特别对于C#开发人员来说,是一个“0”学习成本的机器学习平台,该平台集成了大量API和底层封装,力图使TensorFlow的Python代码风格和编程习惯可以无缝移植到.NET平台,下图是同样TF任务的Python实现和C#实现的语法相似度对比,从中读者基本可以略窥一二。

在C#下使用TensorFlow.NET训练自己的数据集_第1张图片

由于TensorFlow.NET在.NET平台的优秀性能,同时搭配SciSharp的NumSharp、SharpCV、Pandas.NET、Keras.NET、Matplotlib.Net等模块,可以完全脱离Python环境使用,目前已经被微软ML.NET官方的底层算法集成,并被谷歌写入TensorFlow官网教程推荐给全球开发者。

  • SciSharp 产品结构

    在C#下使用TensorFlow.NET训练自己的数据集_第2张图片

  • 微软 ML.NET底层集成算法

    在C#下使用TensorFlow.NET训练自己的数据集_第3张图片

  • 谷歌官方推荐.NET开发者使用

    URL: https://www.tensorflow.org/versions/r2.0/api_docs

    在C#下使用TensorFlow.NET训练自己的数据集_第4张图片

项目说明

本文利用TensorFlow.NET构建简单的图像分类模型,针对工业现场的印刷字符进行单字符OCR识别,从工业相机获取原始大尺寸的图像,前期使用OpenCV进行图像预处理和字符分割,提取出单个字符的小图,送入TF进行推理,推理的结果按照顺序组合成完整的字符串,返回至主程序逻辑进行后续的生产线工序。

实际使用中,如果你们需要训练自己的图像,只需要把训练的文件夹按照规定的顺序替换成你们自己的图片即可。支持GPU或CPU方式,该项目的完整代码在GitHub如下

https://github.com/SciSharp/SciSharp-Stack-Examples/blob/master/src/TensorFlowNET.Examples/ImageProcessing/CnnInYourOwnData.cs

模型介绍

本项目的CNN模型主要由 2个卷积层&池化层 和 1个全连接层 组成,激活函数使用常见的Relu,是一个比较浅的卷积神经网络模型。其中超参数之一"学习率",采用了自定义的动态下降的学习率,后面会有详细说明。具体每一层的Shape参考下图:

在C#下使用TensorFlow.NET训练自己的数据集_第5张图片

数据集说明

为了模型测试的训练速度考虑,图像数据集主要节选了一小部分的OCR字符(X、Y、Z),数据集的特征如下:

  • 分类数量:3 classes 【X/Y/Z】

  • 图像尺寸:Width 64 × Height 64

  • 图像通道:1 channel(灰度图)

  • 数据集数量:

    • train:X - 384pcs ; Y - 384pcs ; Z - 384pcs

    • validation:X - 96pcs ; Y - 96pcs ; Z - 96pcs

    • test:X - 96pcs ; Y - 96pcs ; Z - 96pcs

  • 其它说明:数据集已经经过 随机 翻转/平移/缩放/镜像 等预处理进行增强

  • 整体数据集情况如下图所示:

    在C#下使用TensorFlow.NET训练自己的数据集_第6张图片 在C#下使用TensorFlow.NET训练自己的数据集_第7张图片 在C#下使用TensorFlow.NET训练自己的数据集_第8张图片

代码说明

环境设置

  • .NET 框架:使用.NET Framework 4.7.2及以上,或者使用.NET CORE 2.2及以上

  • CPU 配置: Any CPU 或 X64 皆可

  • GPU 配置:需要自行配置好CUDA和环境变量,建议 CUDA v10.1,Cudnn v7.5

类库和命名空间引用

  1. 从NuGet安装必要的依赖项,主要是SciSharp相关的类库,如下图所示:

    注意事项:尽量安装最新版本的类库,CV须使用 SciSharp 的 SharpCV 方便内部变量传递

    <PackageReference Include="Colorful.Console" Version="1.2.9" />
    <PackageReference Include="Newtonsoft.Json" Version="12.0.3" />
    <PackageReference Include="SciSharp.TensorFlow.Redist" Version="1.15.0" />
    <PackageReference Include="SciSharp.TensorFlowHub" Version="0.0.5" />
    <PackageReference Include="SharpCV" Version="0.2.0" />
    <PackageReference Include="SharpZipLib" Version="1.2.0" />
    <PackageReference Include="System.Drawing.Common" Version="4.7.0" />
    <PackageReference Include="TensorFlow.NET" Version="0.14.0" />
    
  2. 引用命名空间,包括 NumSharp、Tensorflow 和 SharpCV ;

    using NumSharp;
    using NumSharp.Backends;
    using NumSharp.Backends.Unmanaged;
    using SharpCV;
    using System;
    using System.Collections;
    using System.Collections.Generic;
    using System.Diagnostics;
    using System.IO;
    using System.Linq;
    using System.Runtime.CompilerServices;
    using Tensorflow;
    using static Tensorflow.Binding;
    using static SharpCV.Binding;
    using System.Collections.Concurrent;
    using System.Threading.Tasks;
    

主逻辑结构

主逻辑:

  1. 准备数据

  2. 创建计算图

  3. 训练

  4. 预测

    public bool Run()
    {
        PrepareData();
        BuildGraph();
    
        using (var sess = tf.Session())
        {
            Train(sess);
            Test(sess);
        }
    
        TestDataOutput();
    
        return accuracy_test > 0.98;
    
    }
    

数据集载入

数据集下载和解压

  • 数据集地址:https://github.com/SciSharp/SciSharp-Stack-Examples/blob/master/data/data_CnnInYourOwnData.zip

  • 数据集下载和解压代码 ( 部分封装的方法请参考 GitHub完整代码 ):

    string url = "https://github.com/SciSharp/SciSharp-Stack-Examples/blob/master/data/data_CnnInYourOwnData.zip";
    Directory.CreateDirectory(Name);
    Utility.Web.Download(url, Name, "data_CnnInYourOwnData.zip");
    Utility.Compress.UnZip(Name + "\\data_CnnInYourOwnData.zip", Name);
    

字典创建

读取目录下的子文件夹名称,作为分类的字典,方便后面One-hot使用

 private void FillDictionaryLabel(string DirPath)
 {
     string[] str_dir = Directory.GetDirectories(DirPath, "*", SearchOption.TopDirectoryOnly);
     int str_dir_num = str_dir.Length;
     if (str_dir_num > 0)
     {
         Dict_Label = new Dictionary<Int64, string>();
         for (int i = 0; i < str_dir_num; i++)
         {
             string label = (str_dir[i].Replace(DirPath + "\\", "")).Split('\\').First();
             Dict_Label.Add(i, label);
             print(i.ToString() + " : " + label);
         }
         n_classes = Dict_Label.Count;
     }
 }

文件List读取和打乱

从文件夹中读取train、validation、test的list,并随机打乱顺序。

  • 读取目录
ArrayFileName_Train = Directory.GetFiles(Name + "\\train", "*.*", SearchOption.AllDirectories);
ArrayLabel_Train = GetLabelArray(ArrayFileName_Train);

ArrayFileName_Validation = Directory.GetFiles(Name + "\\validation", "*.*", SearchOption.AllDirectories);
ArrayLabel_Validation = GetLabelArray(ArrayFileName_Validation);

ArrayFileName_Test = Directory.GetFiles(Name + "\\test", "*.*", SearchOption.AllDirectories);
ArrayLabel_Test = GetLabelArray(ArrayFileName_Test);
  • 获得标签
private Int64[] GetLabelArray(string[] FilesArray)
{
    Int64[] ArrayLabel = new Int64[FilesArray.Length];
    for (int i = 0; i < ArrayLabel.Length; i++)
    {
        string[] labels = FilesArray[i].Split('\\');
        string label = labels[labels.Length - 2];
        ArrayLabel[i] = Dict_Label.Single(k => k.Value == label).Key;
    }
    return ArrayLabel;
}
  • 随机乱序
public (string[], Int64[]) ShuffleArray(int count, string[] images, Int64[] labels)
{
    ArrayList mylist = new ArrayList();
    string[] new_images = new string[count];
    Int64[] new_labels = new Int64[count];
    Random r = new Random();
    for (int i = 0; i < count; i++)
    {
        mylist.Add(i);
    }

    for (int i = 0; i < count; i++)
    {
        int rand = r.Next(mylist.Count);
        new_images[i] = images[(int)(mylist[rand])];
        new_labels[i] = labels[(int)(mylist[rand])];
        mylist.RemoveAt(rand);
    }
    print("shuffle array list: " + count.ToString());
    return (new_images, new_labels);
}

部分数据集预先载入

Validation/Test数据集和标签一次性预先载入成NDArray格式。

private void LoadImagesToNDArray()
{
    //Load labels
    y_valid = np.eye(Dict_Label.Count)[new NDArray(ArrayLabel_Validation)];
    y_test = np.eye(Dict_Label.Count)[new NDArray(ArrayLabel_Test)];
    print("Load Labels To NDArray : OK!");

    //Load Images
    x_valid = np.zeros(ArrayFileName_Validation.Length, img_h, img_w, n_channels);
    x_test = np.zeros(ArrayFileName_Test.Length, img_h, img_w, n_channels);
    LoadImage(ArrayFileName_Validation, x_valid, "validation");
    LoadImage(ArrayFileName_Test, x_test, "test");
    print("Load Images To NDArray : OK!");
}
private void LoadImage(string[] a, NDArray b, string c)
{
    for (int i = 0; i < a.Length; i++)
    {
        b[i] = ReadTensorFromImageFile(a[i]);
        Console.Write(".");
    }
    Console.WriteLine();
    Console.WriteLine("Load Images To NDArray: " + c);
}
private NDArray ReadTensorFromImageFile(string file_name)
{
    using (var graph = tf.Graph().as_default())
    {
        var file_reader = tf.read_file(file_name, "file_reader");
        var decodeJpeg = tf.image.decode_jpeg(file_reader, channels: n_channels, name: "DecodeJpeg");
        var cast = tf.cast(decodeJpeg, tf.float32);
        var dims_expander = tf.expand_dims(cast, 0);
        var resize = tf.constant(new int[] { img_h, img_w });
        var bilinear = tf.image.resize_bilinear(dims_expander, resize);
        var sub = tf.subtract(bilinear, new float[] { img_mean });
        var normalized = tf.divide(sub, new float[] { img_std });

        using (var sess = tf.Session(graph))
        {
            return sess.run(normalized);
        }
    }
}

计算图构建

构建CNN静态计算图,其中学习率每n轮Epoch进行1次递减。

#region BuildGraph
public Graph BuildGraph()
{
    var graph = new Graph().as_default();

    tf_with(tf.name_scope("Input"), delegate
            {
                x = tf.placeholder(tf.float32, shape: (-1, img_h, img_w, n_channels), name: "X");
                y = tf.placeholder(tf.float32, shape: (-1, n_classes), name: "Y");
            });

    var conv1 = conv_layer(x, filter_size1, num_filters1, stride1, name: "conv1");
    var pool1 = max_pool(conv1, ksize: 2, stride: 2, name: "pool1");
    var conv2 = conv_layer(pool1, filter_size2, num_filters2, stride2, name: "conv2");
    var pool2 = max_pool(conv2, ksize: 2, stride: 2, name: "pool2");
    var layer_flat = flatten_layer(pool2);
    var fc1 = fc_layer(layer_flat, h1, "FC1", use_relu: true);
    var output_logits = fc_layer(fc1, n_classes, "OUT", use_relu: false);

    //Some important parameter saved with graph , easy to load later
    var img_h_t = tf.constant(img_h, name: "img_h");
    var img_w_t = tf.constant(img_w, name: "img_w");
    var img_mean_t = tf.constant(img_mean, name: "img_mean");
    var img_std_t = tf.constant(img_std, name: "img_std");
    var channels_t = tf.constant(n_channels, name: "img_channels");

    //learning rate decay
    gloabl_steps = tf.Variable(0, trainable: false);
    learning_rate = tf.Variable(learning_rate_base);

    //create train images graph
    tf_with(tf.variable_scope("LoadImage"), delegate
            {
                decodeJpeg = tf.placeholder(tf.@byte, name: "DecodeJpeg");
                var cast = tf.cast(decodeJpeg, tf.float32);
                var dims_expander = tf.expand_dims(cast, 0);
                var resize = tf.constant(new int[] { img_h, img_w });
                var bilinear = tf.image.resize_bilinear(dims_expander, resize);
                var sub = tf.subtract(bilinear, new float[] { img_mean });
                normalized = tf.divide(sub, new float[] { img_std }, name: "normalized");
            });

    tf_with(tf.variable_scope("Train"), delegate
            {
                tf_with(tf.variable_scope("Loss"), delegate
                        {
                            loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels: y, logits: output_logits), name: "loss");
                        });

                tf_with(tf.variable_scope("Optimizer"), delegate
                        {
                            optimizer = tf.train.AdamOptimizer(learning_rate: learning_rate, name: "Adam-op").minimize(loss, global_step: gloabl_steps);
                        });

                tf_with(tf.variable_scope("Accuracy"), delegate
                        {
                            var correct_prediction = tf.equal(tf.argmax(output_logits, 1), tf.argmax(y, 1), name: "correct_pred");
                            accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32), name: "accuracy");
                        });

                tf_with(tf.variable_scope("Prediction"), delegate
                        {
                            cls_prediction = tf.argmax(output_logits, axis: 1, name: "predictions");
                            prob = tf.nn.softmax(output_logits, axis: 1, name: "prob");
                        });
            });
    return graph;
}

/// 
/// Create a 2D convolution layer
/// 
/// input from previous layer
/// size of each filter
/// number of filters(or output feature maps)
/// filter stride
/// layer name
/// The output array
private Tensor conv_layer(Tensor x, int filter_size, int num_filters, int stride, string name)
{
    return tf_with(tf.variable_scope(name), delegate
                   {

                       var num_in_channel = x.shape[x.NDims - 1];
                       var shape = new[] { filter_size, filter_size, num_in_channel, num_filters };
                       var W = weight_variable("W", shape);
                       // var tf.summary.histogram("weight", W);
                       var b = bias_variable("b", new[] { num_filters });
                       // tf.summary.histogram("bias", b);
                       var layer = tf.nn.conv2d(x, W,
                                                strides: new[] { 1, stride, stride, 1 },
                                                padding: "SAME");
                       layer += b;
                       return tf.nn.relu(layer);
                   });
}

/// 
/// Create a max pooling layer
/// 
/// input to max-pooling layer
/// size of the max-pooling filter
/// stride of the max-pooling filter
/// layer name
/// The output array
private Tensor max_pool(Tensor x, int ksize, int stride, string name)
{
    return tf.nn.max_pool(x,
                          ksize: new[] { 1, ksize, ksize, 1 },
                          strides: new[] { 1, stride, stride, 1 },
                          padding: "SAME",
                          name: name);
}

/// 
/// Flattens the output of the convolutional layer to be fed into fully-connected layer
/// 
/// input array
/// flattened array
private Tensor flatten_layer(Tensor layer)
{
    return tf_with(tf.variable_scope("Flatten_layer"), delegate
                   {
                       var layer_shape = layer.TensorShape;
                       var num_features = layer_shape[new Slice(1, 4)].size;
                       var layer_flat = tf.reshape(layer, new[] { -1, num_features });

                       return layer_flat;
                   });
}

/// 
/// Create a weight variable with appropriate initialization
/// 
/// 
/// 
/// 
private RefVariable weight_variable(string name, int[] shape)
{
    var initer = tf.truncated_normal_initializer(stddev: 0.01f);
    return tf.get_variable(name,
                           dtype: tf.float32,
                           shape: shape,
                           initializer: initer);
}

/// 
/// Create a bias variable with appropriate initialization
/// 
/// 
/// 
/// 
private RefVariable bias_variable(string name, int[] shape)
{
    var initial = tf.constant(0f, shape: shape, dtype: tf.float32);
    return tf.get_variable(name,
                           dtype: tf.float32,
                           initializer: initial);
}

/// 
/// Create a fully-connected layer
/// 
/// input from previous layer
/// number of hidden units in the fully-connected layer
/// layer name
/// boolean to add ReLU non-linearity (or not)
/// The output array
private Tensor fc_layer(Tensor x, int num_units, string name, bool use_relu = true)
{
    return tf_with(tf.variable_scope(name), delegate
                   {
                       var in_dim = x.shape[1];

                       var W = weight_variable("W_" + name, shape: new[] { in_dim, num_units });
                       var b = bias_variable("b_" + name, new[] { num_units });

                       var layer = tf.matmul(x, W) + b;
                       if (use_relu)
                           layer = tf.nn.relu(layer);

                       return layer;
                   });
}
#endregion

模型训练和模型保存

  • Batch数据集的读取,采用了 SharpCV 的cv2.imread,可以直接读取本地图像文件至NDArray,实现CV和Numpy的无缝对接

  • 使用.NET的异步线程安全队列BlockingCollection,实现TensorFlow原生的队列管理器FIFOQueue

    • 在训练模型的时候,我们需要将样本从硬盘读取到内存之后,才能进行训练。我们在会话中运行多个线程,并加入队列管理器进行线程间的文件入队出队操作,并限制队列容量,主线程可以利用队列中的数据进行训练,另一个线程进行本地文件的IO读取,这样可以实现数据的读取和模型的训练是异步的,降低训练时间。
  • 模型的保存,可以选择每轮训练都保存,或最佳训练模型保存

    #region Train
    public void Train(Session sess)
    {
        // Number of training iterations in each epoch
        var num_tr_iter = (ArrayLabel_Train.Length) / batch_size;
    
        var init = tf.global_variables_initializer();
        sess.run(init);
    
        var saver = tf.train.Saver(tf.global_variables(), max_to_keep: 10);
    
        path_model = Name + "\\MODEL";
        Directory.CreateDirectory(path_model);
    
        float loss_val = 100.0f;
        float accuracy_val = 0f;
    
        var sw = new Stopwatch();
        sw.Start();
        foreach (var epoch in range(epochs))
        {
            print($"Training epoch: {epoch + 1}");
            // Randomly shuffle the training data at the beginning of each epoch 
            (ArrayFileName_Train, ArrayLabel_Train) = ShuffleArray(ArrayLabel_Train.Length, ArrayFileName_Train, ArrayLabel_Train);
            y_train = np.eye(Dict_Label.Count)[new NDArray(ArrayLabel_Train)];
    
            //decay learning rate
            if (learning_rate_step != 0)
            {
                if ((epoch != 0) && (epoch % learning_rate_step == 0))
                {
                    learning_rate_base = learning_rate_base * learning_rate_decay;
                    if (learning_rate_base <= learning_rate_min) { learning_rate_base = learning_rate_min; }
                    sess.run(tf.assign(learning_rate, learning_rate_base));
                }
            }
    
    		//Load local images asynchronously,use queue,improve train efficiency
            BlockingCollection<(NDArray c_x, NDArray c_y, int iter)> BlockC = new BlockingCollection<(NDArray C1, NDArray C2, int iter)>(TrainQueueCapa);
            Task.Run(() =>
                     {
                         foreach (var iteration in range(num_tr_iter))
                         {
                             var start = iteration * batch_size;
                             var end = (iteration + 1) * batch_size;
                             (NDArray x_batch, NDArray y_batch) = GetNextBatch(sess, ArrayFileName_Train, y_train, start, end);
                             BlockC.Add((x_batch, y_batch, iteration));
                         }
                         BlockC.CompleteAdding();
                     });
    
            foreach (var item in BlockC.GetConsumingEnumerable())
            {
                sess.run(optimizer, (x, item.c_x), (y, item.c_y));
    
                if (item.iter % display_freq == 0)
                {
                    // Calculate and display the batch loss and accuracy
                    var result = sess.run(new[] { loss, accuracy }, new FeedItem(x, item.c_x), new FeedItem(y, item.c_y));
                    loss_val = result[0];
                    accuracy_val = result[1];
                    print("CNN:" + ($"iter {item.iter.ToString("000")}: Loss={loss_val.ToString("0.0000")}, Training Accuracy={accuracy_val.ToString("P")} {sw.ElapsedMilliseconds}ms"));
                    sw.Restart();
                }
            }             
    
            // Run validation after every epoch
            (loss_val, accuracy_val) = sess.run((loss, accuracy), (x, x_valid), (y, y_valid));
            print("CNN:" + "---------------------------------------------------------");
            print("CNN:" + $"gloabl steps: {sess.run(gloabl_steps) },learning rate: {sess.run(learning_rate)}, validation loss: {loss_val.ToString("0.0000")}, validation accuracy: {accuracy_val.ToString("P")}");
            print("CNN:" + "---------------------------------------------------------");
    
            if (SaverBest)
            {
                if (accuracy_val > max_accuracy)
                {
                    max_accuracy = accuracy_val;
                    saver.save(sess, path_model + "\\CNN_Best");
                    print("CKPT Model is save.");
                }
            }
            else
            {
                saver.save(sess, path_model + string.Format("\\CNN_Epoch_{0}_Loss_{1}_Acc_{2}", epoch, loss_val, accuracy_val));
                print("CKPT Model is save.");
            }
        }
        Write_Dictionary(path_model + "\\dic.txt", Dict_Label);
    }
    private void Write_Dictionary(string path, Dictionary<Int64, string> mydic)
    {
        FileStream fs = new FileStream(path, FileMode.Create);
        StreamWriter sw = new StreamWriter(fs);
        foreach (var d in mydic) { sw.Write(d.Key + "," + d.Value + "\r\n"); }
        sw.Flush();
        sw.Close();
        fs.Close();
        print("Write_Dictionary");
    }
    private (NDArray, NDArray) Randomize(NDArray x, NDArray y)
    {
        var perm = np.random.permutation(y.shape[0]);
        np.random.shuffle(perm);
        return (x[perm], y[perm]);
    }
    private (NDArray, NDArray) GetNextBatch(NDArray x, NDArray y, int start, int end)
    {
        var slice = new Slice(start, end);
        var x_batch = x[slice];
        var y_batch = y[slice];
        return (x_batch, y_batch);
    }
    private unsafe (NDArray, NDArray) GetNextBatch(Session sess, string[] x, NDArray y, int start, int end)
    {
        NDArray x_batch = np.zeros(end - start, img_h, img_w, n_channels);
        int n = 0;
        for (int i = start; i < end; i++)
        {
          NDArray img4 = cv2.imread(x[i], IMREAD_COLOR.IMREAD_GRAYSCALE);
            x_batch[n] = sess.run(normalized, (decodeJpeg, img4));
            n++;
        }
        var slice = new Slice(start, end);
        var y_batch = y[slice];
        return (x_batch, y_batch);
    }
    #endregion   
    

测试集预测

  • 训练完成的模型对test数据集进行预测,并统计准确率

  • 计算图中增加了一个提取预测结果Top-1的概率的节点,最后测试集预测的时候可以把详细的预测数据进行输出,方便实际工程中进行调试和优化。

    public void Test(Session sess)
    {
        (loss_test, accuracy_test) = sess.run((loss, accuracy), (x, x_test), (y, y_test));
        print("CNN:" + "---------------------------------------------------------");
        print("CNN:" + $"Test loss: {loss_test.ToString("0.0000")}, test accuracy: {accuracy_test.ToString("P")}");
        print("CNN:" + "---------------------------------------------------------");
    
        (Test_Cls, Test_Data) = sess.run((cls_prediction, prob), (x, x_test));
    
    }
    private void TestDataOutput()
    {
        for (int i = 0; i < ArrayLabel_Test.Length; i++)
        {
            Int64 real = ArrayLabel_Test[i];
            int predict = (int)(Test_Cls[i]);
            var probability = Test_Data[i, predict];
            string result = (real == predict) ? "OK" : "NG";
            string fileName = ArrayFileName_Test[i];
            string real_str = Dict_Label[real];
            string predict_str = Dict_Label[predict];
            print((i + 1).ToString() + "|" + "result:" + result + "|" + "real_str:" + real_str + "|"
                  + "predict_str:" + predict_str + "|" + "probability:" + probability.GetSingle().ToString() + "|"
                  + "fileName:" + fileName);
        }
    }
    

总结

本文主要是** .NET下的TensorFlow在实际工业现场视觉检测项目中的应用**,使用SciSharp的TensorFlow.NET构建了简单的CNN图像分类模型,该模型包含输入层、卷积与池化层、扁平化层、全连接层和输出层,这些层都是CNN分类模型的必要的层,针对工业现场的实际图像进行了分类,分类准确性较高。

完整代码可以直接用于大家自己的数据集进行训练,已经在工业现场经过大量测试,可以在GPU或CPU环境下运行,只需要更换tensorflow.dll文件即可实现训练环境的切换。

同时,训练完成的模型文件,可以使用 “CKPT+Meta” 或 冻结成“PB” 2种方式,进行现场的部署,模型部署和现场应用推理可以全部在.NET平台下进行,实现工业现场程序的无缝对接。摆脱了以往Python下 需要通过Flask搭建服务器进行数据通讯交互 的方式,现场部署应用时无需配置Python和TensorFlow的环境【无需对工业现场的原有PC升级安装一大堆环境】,整个过程全部使用传统的.NET的DLL引用的方式。

你可能感兴趣的:(.NET深度学习及前沿技术,tensorflow,c#,.net)