pytorch中BatchNorm1d、BatchNorm2d、BatchNorm3d

1.nn.BatchNorm1d(num_features)

        1.对小批量(mini-batch)的2d或3d输入进行批标准化(Batch Normalization)操作
        2.num_features:
                来自期望输入的特征数,该期望输入的大小为'batch_size x num_features [x width]'
                意思即输入大小的形状可以是'batch_size x num_features' 和 'batch_size x num_features x width' 都可以。
                (输入输出相同)
                输入Shape:(N, C)或者(N, C, L)
                输出Shape:(N, C)或者(N,C,L)

          eps:为保证数值稳定性(分母不能趋近或取0),给分母加上的值。默认为1e-5。
          momentum:动态均值和动态方差所使用的动量。默认为0.1。
          affine:一个布尔值,当设为true,给该层添加可学习的仿射变换参数。
        3.在每一个小批量(mini-batch)数据中,计算输入各个维度的均值和标准差。gamma与beta是可学习的大小为C的参数向量(C为输入大小)
          在训练时,该层计算每次输入的均值与方差,并进行移动平均。移动平均默认的动量值为0.1。
          在验证时,训练求得的均值/方差将用于标准化验证数据。 
        4.例子
                >>> # With Learnable Parameters
                >>> m = nn.BatchNorm1d(100) #num_features指的是randn(20, 100)中(N, C)的第二维C
                >>> # Without Learnable Parameters
                >>> m = nn.BatchNorm1d(100, affine=False)
                >>> input = autograd.Variable(torch.randn(20, 100)) #输入Shape:(N, C)
                >>> output = m(input)  #输出Shape:(N, C)

2.nn.BatchNorm2d(num_features)

        1.对小批量(mini-batch)3d数据组成的4d输入进行批标准化(Batch Normalization)操作
        2.num_features: 
                来自期望输入的特征数,该期望输入的大小为'batch_size x num_features x height x width'
                (输入输出相同)
                    输入Shape:(N, C,H, W)
                    输出Shape:(N, C, H, W)
          eps: 为保证数值稳定性(分母不能趋近或取0),给分母加上的值。默认为1e-5。
          momentum: 动态均值和动态方差所使用的动量。默认为0.1。
          affine: 一个布尔值,当设为true,给该层添加可学习的仿射变换参数。
        3.在每一个小批量(mini-batch)数据中,计算输入各个维度的均值和标准差。gamma与beta是可学习的大小为C的参数向量(C为输入大小)
          在训练时,该层计算每次输入的均值与方差,并进行移动平均。移动平均默认的动量值为0.1。
          在验证时,训练求得的均值/方差将用于标准化验证数据。
        4.例子
            >>> # With Learnable Parameters
            >>> m = nn.BatchNorm2d(100) #num_features指的是randn(20, 100, 35, 45)中(N, C,H, W)的第二维C
            >>> # Without Learnable Parameters
            >>> m = nn.BatchNorm2d(100, affine=False)
            >>> input = autograd.Variable(torch.randn(20, 100, 35, 45))  #输入Shape:(N, C,H, W)
            >>> output = m(input)

3.nn.BatchNorm3d(num_features)

        1.对小批量(mini-batch)4d数据组成的5d输入进行批标准化(Batch Normalization)操作
        2.num_features: 
                来自期望输入的特征数,该期望输入的大小为'batch_size x num_features depth x height x width'
                (输入输出相同)
                 输入Shape:(N, C,D, H, W)
                 输出Shape:(N, C, D, H, W)

          eps: 为保证数值稳定性(分母不能趋近或取0),给分母加上的值。默认为1e-5。
          momentum: 动态均值和动态方差所使用的动量。默认为0.1。
          affine: 一个布尔值,当设为true,给该层添加可学习的仿射变换参数。

        3.在每一个小批量(mini-batch)数据中,计算输入各个维度的均值和标准差。gamma与beta是可学习的大小为C的参数向量(C为输入大小)
          在训练时,该层计算每次输入的均值与方差,并进行移动平均。移动平均默认的动量值为0.1。
          在验证时,训练求得的均值/方差将用于标准化验证数据。
        4.例子
            >>> # With Learnable Parameters
            >>> m = nn.BatchNorm3d(100)  #num_features指的是randn(20, 100, 35, 45, 10)中(N, C, D, H, W)的第二维C
            >>> # Without Learnable Parameters
            >>> m = nn.BatchNorm3d(100, affine=False)  #num_features指的是randn(20, 100, 35, 45, 10)中(N, C, D, H, W)的第二维C
            >>> input = autograd.Variable(torch.randn(20, 100, 35, 45, 10)) #输入Shape:(N, C, D, H, W) 
            >>> output = m(input)

 

你可能感兴趣的:(常用知识,机器学习,深度学习,python,pytorch,BatchNorm)