本文主要讲解:pytorch pso优化cnn-lstm 智慧海洋-渔船轨迹识别
主要思路:
赛题与数据
train_chusai.csv为我处理好的数据,如有需要请私聊
1、基于滑动窗口和LSTM自动编码器的渔船作业类型识别
2、TOP1解决方案
3、基于滑动窗口和PSO-CNN-LSTM的渔船轨迹识别
PSO优化LSTM介绍
代码输出如下:
主运行程序入口
import random
import time
import matplotlib.pyplot as plt
import numpy as np
import torch
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
from torch import nn
from torch.utils.data import TensorDataset
from sklearn.metrics import classification_report, accuracy_score
torch.manual_seed(1) # reproducible
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Hyper Parameters
EPOCH = 122 # train the training data n times, to save time, we just train 1 epoch
LR = 0.001 # learning rate
num_layers = 2
hidden_size = 256
import os
import pandas as pd
os.chdir(r'C:\Projects')
label_dict1 = {'拖网': 0, '围网': 1, '刺网': 2}
label_dict2 = {0: '拖网', 1: '围网', 2: '刺网'}
name_dict = {'渔船ID': 'id', '速度': 'v', '方向': 'dir', 'type': 'label', 'lat': 'x', 'lon': 'y'}
train = pd.read_csv('train_chusai.csv')
# train_chusai = pd.read_csv('train_chusai.csv')
train.rename(columns=name_dict, inplace=True)
# train_chusai.rename(columns=name_dict, inplace=True)
df = train
df['x'] = df['x'] * 100000 - 5630000
df['y'] = df['y'] * 110000 + 2530000
# df = pd.concat([train_chusai, df], axis=0, ignore_index=True)
df = df.drop(['time'], axis=1)
df['label'] = df['label'].map(label_dict1)
X_train = df.iloc[:, :-1]
y_train = df.iloc[:, -1]
INPUT_SIZE = X_train.shape[1] # rnn input size
x_MinMax = preprocessing.MinMaxScaler()
x = x_MinMax.fit_transform(X_train.values)
x = pd.DataFrame(x, columns=['id', 'x', 'y', 'v', 'dir'])
df = pd.concat([x, y_train], axis=1, ignore_index=True)
df.columns = ['id', 'x', 'y', 'v', 'dir', 'label']
# 创建时序块
groups = df.groupby(['id'])
x_train3 = np.zeros(shape=(1, 300, 4))
y_train = []
for name, group in groups:
group_nd = group.iloc[:300, 1:-1].values
if group_nd.shape[0] == 300:
group_nd = group_nd.reshape((1, 300, 4))
x_train3 = np.append(x_train3, group_nd, axis=0)
y_train.append(group.iloc[0, -1])
x_train3_nd = x_train3[1:]
y_train = np.array(y_train)
# 数据集随机分成训练和测试
X_train, X_test, y_train, y_test = train_test_split(x_train3_nd, y_train, test_size=0.2, shuffle=True)
train_data1 = torch.FloatTensor(X_train)
X_test = torch.FloatTensor(X_test)
y = np.eye(3)[y_train]
train_labels = torch.tensor(y).long()
y_test = np.eye(3)[y_test]
train_data, test_x, test_y = TensorDataset(train_data1, train_labels), X_test, y_test
test_x = test_x.to(device)
X_train = train_data1.to(device)
class CNN_LSTM(nn.Module):
def __init__(self, hidden_size, num_layers):
super(CNN_LSTM, self).__init__()
lstm_units = hidden_size
self.conv1d = nn.Conv1d(4, lstm_units, 1)
self.act1 = nn.Sigmoid()
self.maxPool = nn.MaxPool1d(kernel_size=4)
self.drop = nn.Dropout(p=0.01)
self.lstm = nn.LSTM(lstm_units, lstm_units, batch_first=True, num_layers=num_layers, bidirectional=True)
self.act2 = nn.Tanh()
self.cls = nn.Linear(lstm_units * 2, 3)
def forward(self, x):
x = x.transpose(-1, -2) # tf和torch纬度有点不一样
x = self.conv1d(x) # in: bs, dim, window out: bs, lstm_units, window
x = self.act1(x)
x = self.maxPool(x) # bs, lstm_units, 1
x = self.drop(x)
x = x.transpose(-1, -2) # bs, 1, lstm_units
x, (_, _) = self.lstm(x) # bs, 1, 2*lstm_units
x = self.act2(x)
x = x.squeeze(dim=1) # bs, 2*lstm_units
x = self.cls(x)
return x
def training(X):
hidden_size = int(X[0])
num_layers = int(X[1])
LR = round(X[2], 6)
batch_size = int(X[3])
EPOCH = int(X[4])
print([hidden_size, num_layers, LR, batch_size, EPOCH])
lstm_model = CNN_LSTM(hidden_size, num_layers).to(device)
optimizer = torch.optim.AdamW(lstm_model.parameters(), lr=LR) # optimize all cnn parameters
loss_func = nn.CrossEntropyLoss().to(device) # the target label is not one-hotted
# Data Loader for easy mini-batch return in training
train_loader = torch.utils.data.DataLoader(dataset=train_data, batch_size=batch_size, shuffle=True, pin_memory=True,
sampler=None)
# training and testing
for epoch in range(EPOCH):
for step, (b_x, b_y) in enumerate(train_loader): # gives batch data
# b_x = b_x.view(-1, 1, INPUT_SIZE) # reshape x to (batch, time_step, input_size)
b_x = b_x.to(device)
b_y = b_y.to(device)
# b_x = b_x.unsqueeze(1)
output = lstm_model(b_x) # rnn output
loss = loss_func(output, b_y) # cross entropy loss
optimizer.zero_grad() # clear gradients for this training step
loss.backward() # backpropagation, compute gradients
optimizer.step() # apply gradients
test_output = lstm_model(test_x) # (samples, time_step, input_size)
pred_y = torch.max(test_output, 1)[1].data.cpu().numpy()
accuracy = float((pred_y == test_y).astype(int).sum()) / float(test_y.size)
print('accuracy:', accuracy)
return accuracy
# (1) PSO Parameters
MAX_EPISODES = 10
MAX_EP_STEPS = 10
c1 = 2
c2 = 2
pN = 10 # 粒子数量
w_start = 0.9 # 惯性权重
w_end = 0.1
t1 = time.time()
# (2) LSTM Parameters
'''
hidden_size = int(X[0])
num_layers = int(X[1])
LR = round(X[2], 6)
batch_size = int(X[3])
EPOCH = int(X[4])
'''
UP = [222, 4, 0.014, 18, 126]
DOWN = [50, 1, 0.0001, 6, 25]
# [234, 4, 0.001411, 39, 65]
# accuracy: 0.894124847001224
# (3) 搜索维度和粒子的位置和速度等定义
dim = len(UP) # 搜索维度
X = np.zeros((pN, dim)) # 所有粒子的位置和速度
V = np.zeros((pN, dim))
pbest = np.zeros((pN, dim)) # 个体经历的最佳位置和全局最佳位置
gbest = np.zeros(dim)
p_fit = np.zeros(pN) # 每个个体的历史最佳适应值
sum_epochs = MAX_EP_STEPS * MAX_EPISODES * pN + pN * MAX_EPISODES
print('总搜索参数组合数 =', sum_epochs)
# (4) 开始搜索
for i_episode in range(MAX_EPISODES):
"""初始化s"""
random.seed(8)
fit = 0.6 # 全局最佳适应值
# 初始粒子适应度计算
print("计算初始全局最优")
for i in range(pN):
for j in range(dim):
V[i][j] = random.uniform(0, 1)
if j in [2]:
X[i][j] = random.uniform(DOWN[j], UP[j])
else:
X[i][j] = round(random.randint(DOWN[j], UP[j]))
pbest[i] = X[i]
# 计算适应值
tmp = training(X[i])
NN = 1
p_fit[i] = tmp
if tmp > fit:
fit = tmp
gbest = X[i]
print("初始全局最优参数:{:}".format(gbest))
fitness = [] # 适应度函数
for j in range(MAX_EP_STEPS):
for i in range(pN):
temp = training(X[i])
if temp > p_fit[i]: # 更新个体最优
p_fit[i] = temp
pbest[i] = X[i]
if p_fit[i] > fit: # 更新全局最优
gbest = X[i]
fit = p_fit[i]
for i in range(pN):
w = w_start - (w_start - w_end) * (2 * (i / pN) - (i / pN) ** 2) # 修改后的惯性权重表达式
V[i] = w * V[i] + c1 * random.uniform(0, 1) * (pbest[i] - X[i]) + c2 * random.uniform(0, 1) * (
gbest - X[i])
ww = 1
for k in range(dim):
if DOWN[k] < X[i][k] + V[i][k] < UP[k]:
continue
else:
ww = 0
X[i] = X[i] + V[i] * ww
fitness.append(fit)
print("全局最优参数:{:}".format(gbest))
print("全局最佳适应值:{:}".format(fit))
print('Running time: ', time.time() - t1)
# 训练模型 使用PSO找到的最好的神经元个数
X = gbest
hidden_size = int(X[0])
num_layers = int(X[1])
LR = round(X[2], 6)
batch_size = int(X[3])
EPOCH = int(X[4])
# Data Loader for easy mini-batch return in training
train_loader = torch.utils.data.DataLoader(dataset=train_data, batch_size=batch_size, shuffle=True, pin_memory=True,
sampler=None)
lstm_model = CNN_LSTM(hidden_size, num_layers).to(device)
print(lstm_model)
optimizer = torch.optim.AdamW(lstm_model.parameters(), lr=LR) # optimize all cnn parameters
loss_func = nn.CrossEntropyLoss() # the target label is not one-hotted
test_accs = []
train_accs = []
losss = []
# training and testing
for epoch in range(EPOCH):
for step, (b_x, b_y) in enumerate(train_loader): # gives batch data
b_x = b_x.to(device)
b_y = b_y.to(device)
output = lstm_model(b_x) # rnn output
loss = loss_func(output, b_y) # cross entropy loss
optimizer.zero_grad() # clear gradients for this training step
loss.backward() # backpropagation, compute gradients
optimizer.step() # apply gradients
train_output = lstm_model(b_x) # (samples, time_step, input_size)
pred_train_y = torch.max(train_output, 1)[1].data.cpu().numpy()
train_y_pred = np.argmax(pred_train_y, axis=1)
train_y_real = torch.max(b_y, 1)[1].data.cpu().numpy()
# train_y_real = np.argmax(train_y_real, axis=1)
train_accuracy = accuracy_score(train_y_pred, train_y_real)
test_output = lstm_model(test_x) # (samples, time_step, input_size)
pred_y = torch.max(test_output, 1)[1].data.cpu().numpy()
test_accuracy = float((pred_y == test_y).astype(int).sum()) / float(test_y.size)
print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.cpu().numpy (), '| test accuracy: %.3f' % test_accuracy)
losss.append(loss.data.cpu().numpy())
test_accs.append(test_accuracy)
train_accs.append(train_accuracy)
photo_path = 'C:\Projects\photo\\'
plt.plot(losss)
plt.title('LSTM_loss')
plt.ylabel('loss')
plt.xlabel('Epoch')
plt.legend(['train'], loc='best')
plt.savefig(photo_path + "LSTM_PSO_train_loss.png", dpi=500, bbox_inches='tight')
plt.show()
plt.plot(train_accs)
plt.plot(test_accs)
plt.title('accuracy')
plt.ylabel('accuracy')
plt.xlabel('Epoch')
plt.legend(['train', 'test'], loc='best')
plt.savefig(photo_path + "CNN_LSTM_PSO_val_accuracy.png", dpi=500, bbox_inches='tight')
plt.show()
print('accuracy:', max(test_accs))
cls_report = classification_report(y_true=test_y, y_pred=pred_y)
print(cls_report)