- 深度学习乐园智能零售柜商品识别
Java先进事迹
深度学习零售人工智能
1.项目简介本项目专注于智能零售柜商品识别,是为第六届信也科技杯图像算法大赛设计的方案。其核心目标是利用深度学习技术,实现对顾客选购商品的精准识别和自动化结算。当商品被放置在指定区域时,系统应自动检测并识别每件商品,生成购物清单并计算总价格,提升零售柜的自动化与便利性。此类智能系统在不需要售货员的情况下即可进行商品识别和结算,相较于传统的硬件分隔、重量判断、顾客行为监测、或射频识别技术,这种方法不
- YOLOv8改进,YOLOv8检测头融合DiverseBranchBlock,并添加小目标检测层(四头检测),适合目标检测、分割等
挂科边缘
YOLOv8改进YOLO目标检测人工智能计算机视觉深度学习
摘要一种卷积神经网络(ConvNet)的通用构建模块,以在不增加推理时间成本的情况下提高性能。该模块被命名为多样分支块(DiverseBranchBlock,DBB),通过结合不同尺度和复杂度的多样分支来丰富特征空间,包括卷积序列、多尺度卷积和平均池化,从而增强单个卷积的表示能力。在训练后,DBB可以等效地转换为一个单独的卷积层以进行部署。与新型ConvNet架构的进步不同,DBB在保持宏观架构的
- YOLOv10改进,YOLOv10改进主干网络为GhostNetV3(2024年华为的轻量化架构,全网首发),助力涨点
挂科边缘
YOLOv10改进YOLO计算机视觉目标检测人工智能python深度学习
摘要GhostNetV3是由华为诺亚方舟实验室的团队发布的,于2024年4月发布。摘要:紧凑型神经网络专为边缘设备上的应用设计,具备更快的推理速度,但性能相对适中。然而,紧凑型模型的训练策略目前借鉴自传统模型,这忽略了它们在模型容量上的差异,可能阻碍紧凑型模型的性能提升。在本文中,通过系统地研究不同训练成分的影响,我们介绍了一种用于紧凑型模型的强大训练策略。我们发现,适当的重参数化和知识蒸馏设计对
- 2024年AI浪潮:基础设施重构、模型演进与挑战并存
前端
2024年,人工智能领域呈现出蓬勃发展的景象,投资持续增长、基础设施发生变革,技术应用加速落地。各大科技公司和初创企业纷纷涌入,试图在这一充满机遇的领域分一杯羹。本文将深入探讨2024年AI发展的三大核心趋势:AI基础设施的重构、模型发展的新趋势以及AI发展带来的挑战,并重点关注企业如何从AI投资中获得回报,以及AI智能体技术的巨大潜力。选择合适的AI代码生成器将成为企业提升效率的关键。AI基础设
- AI生成前端页面:解放前端开发,拥抱AI时代的高效
前端
在数字时代,效率是企业和个人的核心竞争力。而对于前端开发人员来说,重复性工作和繁琐的代码编写常常成为效率提升的瓶颈。幸运的是,随着人工智能技术的飞速发展,一个新的时代已经到来——AI代码生成器(例如ScriptEcho)的出现,正以前所未有的方式改变着前端开发的格局。本文将探讨人工智能在日常应用中的广泛影响,并着重介绍如何利用AI技术,例如ScriptEcho,来提升前端开发效率,从而更好地应对当
- 「AI 中国」榜单揭晓,OpenBayes贝式计算入选「大模型最具潜力创业企业 TOP 10」
日前,「AI中国」机器之心2024年度评选正式揭晓,OpenBayes贝式计算有幸入选「大模型最具潜力创业企业TOP10」。作为专业的人工智能媒体与产业服务平台,机器之心于2017年发布了AI榜单「SyncedMachineIntelligenceAwards」,在随后的时间里,伴随AI的跨越式发展,机器之心的年度评选也逐渐成为了产业风向标之一,覆盖的领域、范围更加广泛,维度更加细化。机器之心20
- 高效员工培训:AI赋能企业发展新纪元
前端
在当今竞争激烈的商业环境中,员工是企业最宝贵的资产。高效的员工培训不仅能提升员工技能,提高工作效率,更能增强企业核心竞争力,推动企业持续发展。然而,传统的员工培训模式往往存在效率低下、成本高昂、缺乏互动性等诸多问题。例如,传统的线下培训需要耗费大量时间和资源,难以满足员工个性化学习需求,培训效果评估也缺乏客观数据支撑。面对这些挑战,人工智能(AI)技术的应用为企业员工培训带来了革命性的变革,为构建
- 【YOLOv8改进】 YOLOv8 更换骨干网络之 GhostNet :通过低成本操作获得更多特征 (论文笔记+引入代码)
YOLO大师
YOLO论文阅读
YOLO目标检测创新改进与实战案例专栏专栏目录:YOLO有效改进系列及项目实战目录包含卷积,主干注意力,检测头等创新机制以及各种目标检测分割项目实战案例专栏链接:YOLO基础解析+创新改进+实战案例介绍摘要在嵌入式设备上部署卷积神经网络(CNNs)由于有限的内存和计算资源而变得困难。特征图中的冗余是那些成功的CNNs的一个重要特性,但在神经架构设计中很少被研究。本文提出了一种新颖的Ghost模块,
- 论文阅读:Deep Bilateral Learning for Real-Time Image Enhancement-google-hdrnet-slicing
SetMaker
论文阅读
项目地址:https://gitcode.com/google/hdrnethdrnet作为超分领域的经典文章,由google提出主要用来用轻量化的方法来实现高分辨率的图像生成,hdrnet结合cnn可以让更高分辨率的图像部署在板端。如图所示,原始图像比如4k图像,首先分为两个主要模块:grid和guide。grid就是对应图上面的那一条特征提取网络,具体来说,原始图像经过下采样之后,默认256分
- 探索未来视频创作:Tune-A-Video项目深度解析
刘通双Elsie
探索未来视频创作:Tune-A-Video项目深度解析Tune-A-Video[ICCV2023]Tune-A-Video:One-ShotTuningofImageDiffusionModelsforText-to-VideoGeneration项目地址:https://gitcode.com/gh_mirrors/tu/Tune-A-Video在数字艺术与人工智能的交汇点上,Tune-A-Vi
- 021:为什么是卷积呢?
董董灿是个攻城狮
计算机视觉保姆级教程人工智能计算机视觉CNN
本文为合集收录,欢迎查看合集/专栏链接进行全部合集的系统学习。合集完整版请查看这里。卷积算法非常重要,但是为什么是卷积呢?在进一步学习之前,先看一看神经网络(或者叫一个AI模型)是如何完成一张图片的推理的。你肯定听说过阿尔法狗大战柯洁的故事,当时新闻一出,不知大家什么反应,反正我是被震撼到了:AI模型竟然学到了那么多的棋谱,而且人类在AI的面前毫无还手可言。但是,你有没有想过一个问题:阿尔法狗学会
- 在PyTorch框架上训练ImageNet时,Dataloader加载速度慢怎么解决?
cda2024
pytorch人工智能python
在深度学习领域,PyTorch因其灵活性和易用性而受到广泛欢迎。然而,在实际应用中,特别是在处理大规模数据集如ImageNet时,Dataloader的加载速度往往成为瓶颈。本文将深入探讨这一问题,并提供多种解决方案,帮助你在PyTorch框架上高效地训练ImageNet。1.问题背景ImageNet是一个包含超过1400万张图像的大规模数据集,被广泛用于图像分类任务的研究。在PyTorch中,D
- 对于编程零基础,第一个语言是 Python 的人有什么建议?
cda2024
python开发语言
在当今数字化时代,编程已成为一项必备技能。无论你是想成为一名专业的软件开发人员,还是希望在数据分析、人工智能等领域有所建树,掌握一门编程语言都是至关重要的第一步。对于许多初学者来说,Python是一个理想的选择。它不仅语法简洁易懂,而且拥有强大的社区支持和丰富的库资源。那么,对于编程零基础且选择Python作为第一门语言的人,有哪些实用的建议呢?1.建立正确的学习心态1.1持之以恒学习编程并不是一
- OpenAI进军实体机器人:GPT赋能的智能未来
前端
近年来,人工智能技术飞速发展,深刻地改变着我们的生活。而OpenAI作为人工智能领域的领军者,其最新动作更是引人注目:进军实体机器人领域!这不仅标志着人工智能技术应用场景的重大拓展,也预示着未来智能机器人时代的加速到来。本文将深入探讨OpenAI的实体机器人战略,分析其背后的深层逻辑,并展望其未来发展趋势与挑战。OpenAI的战略布局:从AI模型到实体机器人OpenAI在人工智能领域已取得了令人瞩
- Python从0到100(七十三):Python OpenCV-OpenCV实现手势虚拟拖拽
是Dream呀
pythonopencv开发语言
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- 国产海光CPU平台兼容性指南-基础软件分册-20231013(附各系统下载链接)
技术瘾君子1573
服务器&存储服务器兼容列表海光CPU云计算大数据操作系统
目录声明一、操作系统二、虚拟化和云2.1虚拟化和云2.2虚拟机上的操作系统2.2.1VMwarevSphere上的虚拟机操作系统2.2.2KVM上的虚拟机操作系统2.2.3WindowsHyper-V上的虚拟机操作系统2.2.4VirtualBox上的虚拟机操作系统三、分布式存储四、数据库五、中间件六、大数据七、平台组件7.1云平台7.2大数据平台7.3人工智能平台7.4科学与工程计算平台八、其它
- 企业如何打造高效智能问答系统?一文详解架构与实现!
功城师
大语言模型自然语言处理LLM人工智能智能问答RAGAgent
随着人工智能技术的不断发展,智能问答系统成为越来越多企业提升客户服务、知识管理与内部沟通的关键工具。今天我们将深入解析一套智能问答系统的设计思路与技术架构,帮助大家更好地理解如何利用这一系统在实际场景中高效运作。一、智能问答系统的整体架构这套智能问答系统分为前台、AI服务和后台三个核心部分,每个部分承担着不同的职责,分别负责用户交互、问题处理与数据支持。通过这种模块化的设计,整个系统的工作流程得以
- ACNet:深度学习中的自适应卷积网络新星
郎轶诺
ACNet:深度学习中的自适应卷积网络新星项目地址:https://gitcode.com/gh_mirrors/ac/ACNet在深度学习领域,卷积神经网络(CNN)一直是图像处理和计算机视觉任务的核心技术。然而,传统的固定大小的卷积核无法灵活适应不同区域的信息密度。针对这一问题,ACNet(AdaptiveConvolutionNetwork)项目应运而生,它引入了一种新型的自适应卷积层,旨在
- 与机器学习的邂逅--自适应神经网络结构的深度解析
想成为高手499
机器学习与人工智能机器学习神经网络人工智能
引言随着人工智能的发展,神经网络已成为许多应用领域的重要工具。自适应神经网络(AdaptiveNeuralNetworks,ANN)因其出色的学习能力和灵活性,逐渐成为研究的热点。本文将详细探讨自适应神经网络的基本概念、工作原理、关键技术、C++实现示例及其应用案例,最后展望未来的发展趋势。自适应神经网络的基本概念什么是自适应神经网络?自适应神经网络是一种能够根据输入数据的变化和环境的动态特性自动
- 自适应神经网络架构:原理解析与代码示例
chian-ocean
机器学习神经网络人工智能深度学习
个人主页:chian-ocean文章专栏自适应神经网络结构:深入探讨与代码实现1.引言随着深度学习的不断发展,传统神经网络模型在处理复杂任务时的局限性逐渐显现。固定的网络结构和参数对于动态变化的环境和多样化的数据往往难以适应,导致了过拟合或欠拟合的问题。自适应神经网络(AdaptiveNeuralNetworks,ANN)为此提供了一种新的解决方案,它可以根据数据特征和训练情况自动调整网络结构,从
- 深度解析智能问答系统:如何打造精准、高效的AI对话架构?
和老莫一起学AI
人工智能架构自然语言处理产品经理语言模型学习ai
在人工智能的飞速发展中,智能问答系统(QA系统)逐渐成为了企业内部管理、客户服务、搜索引擎等多个领域中的关键技术。今天,我们将深入探讨一个基于大模型、自然语言处理、知识检索的智能问答系统的架构,详细介绍其技术原理、流程以及未来应用前景。一、系统整体概览在这个智能问答系统中,整个流程可以大致划分为两大部分:前端问答生成与后端离线数据处理。前端部分是用户交互的核心,通过用户的输入、关键词提取、检索和问
- PostgreSQL - pgvector 插件构建向量数据库并进行相似度查询
花千树-010
RAG数据库postgresqlAI编程
在现代的机器学习和人工智能应用中,向量相似度检索是一个非常重要的技术,尤其是在文本、图像或其他类型的嵌入向量的操作中。本文将介绍如何在PostgreSQL中安装pgvector插件,用于存储和检索向量数据,并展示如何通过Python脚本向数据库插入向量并执行相似度查询。一、安装PostgreSQL并配置pgvector插件1.安装PostgreSQL首先,确保你已经安装了PostgreSQL。可以
- 全面解析NVIDIA显卡:从入门级到旗舰级显卡详解
花千树-010
大模型人工智能算法智能电视
在选择显卡时,了解不同显卡的性能和适用场景是非常重要的。无论你是预算有限的入门用户,还是追求极致性能的游戏玩家,亦或是专业的内容创作者和深度学习研究人员,NVIDIA都有适合你的显卡。本篇博文将详细列举NVIDIA显卡的各项配置,从低到高逐一整理,并给出适用的使用场景。入门级显卡NVIDIAGeForceGT1030CUDA核心数:384基础频率:1227MHz加速频率:1468MHz显存:2GB
- AI行业高压与人才健康:纪念Felix Hill,并探讨AI代码生成工具的价值
前端
今天,我们怀着沉痛的心情悼念GoogleDeepMind研究科学家FelixHill,这位杰出的AI学者在41岁的年纪离开了我们。他的离世引发了我们对AI行业高压环境与人才健康问题的深刻反思。Felix生前曾公开表达AI行业前所未有的压力,这促使我们思考如何利用技术,例如AI代码生成器,来改善开发者的工作环境,提升效率,守护人才健康。FelixHill在自然语言处理和人工智能领域取得了令人瞩目的成
- 2024年AI浪潮:基础设施重构、模型演进与挑战并存
前端
2024年,人工智能领域呈现出蓬勃发展的景象,投资持续增长、基础设施发生变革,技术应用加速落地。各大科技公司和初创企业纷纷涌入,试图在这一充满机遇的领域分一杯羹。本文将深入探讨2024年AI发展的三大核心趋势:AI基础设施的重构、模型发展的新趋势以及AI发展带来的挑战,并重点关注企业如何从AI投资中获得回报,以及AI智能体技术的巨大潜力。选择合适的AI代码生成器将成为企业提升效率的关键。AI基础设
- 直播预告丨精度优于AlphaFold,基于深度学习实现生物大分子及其互作的三维结构预测
「MeetAI4S」系列直播第6期将于1月15日19:00准时开播,HyperAI超神经有幸邀请到了南开大学统计与数据科学学院教授郑伟,他本次分享的主题是「AlphaFold3王座未稳,来自学术界的反超:基于深度学习的生物大分子及其互作的三维结构预测」。蛋白质的功能取决于其独特的三维结构,近年来,基于深度学习等人工智能技术的蛋白质结构预测发展迅猛,AlphaFold甚至获得了2024年诺贝尔化学奖
- Gary Marcus 2025年AI预测:AGI仍在路上,务实发展才是王道
前端
人工智能领域发展日新月异,各种预测层出不穷。知名人工智能专家GaryMarcus近期发布了对2025年AI发展趋势的25项预测,其中最引人注目的是:AGI(通用人工智能)不会在2025年出现。这与一些过于乐观甚至盲目乐观的预测形成了鲜明对比。本文将深入解读Marcus的预测,探讨其背后的逻辑,并结合当前AI技术发展现状进行分析。Marcus的预测整体基调是谨慎乐观,他既肯定了AI在特定领域的进步,
- 数据驱动销售预测的未来:ScriptEcho赋能高效决策
前端
在瞬息万变的商业环境中,准确的销售预测是企业制定有效销售策略、实现业绩增长的基石。传统的销售预测方法往往依赖于人工分析和复杂的电子表格,效率低下,难以应对市场变化的快速冲击。然而,随着大数据的兴起和人工智能技术的飞速发展,数据驱动决策正成为现代企业提升竞争力的关键。本文将探讨销售预测面临的挑战与机遇,并重点介绍ScriptEcho如何通过AI赋能,提升销售预测的准确性和效率,助力企业实现数据驱动增
- 人类为何追求AGI?一个AI代码生成工具的思考
前端
近年来,“AI写代码工具”的出现,无疑为软件开发领域带来了革命性的变化。而我们今天要探讨的,是关于人类对通用人工智能(AGI)的追求,以及这与AI辅助开发工具之间微妙的联系。文章开头就抛出了一个尖锐的问题:人类为何如此痴迷于AGI,而非将更多精力放在改善人类生活本身?文章作者表达了对AGI发展方向的担忧。他认为,目前对AGI的追求,更多地体现在创造能够取代人类的超级智能上,例如“少数派报告式”的行
- AI代码生成工具的未来:杨立昆的洞见与AI革命
前端
近年来,人工智能(AI)领域取得了令人瞩目的进展,特别是以大型语言模型为代表的AI技术,在自然语言处理、图像生成等领域展现出强大的能力。然而,深度学习先驱杨立昆(YannLeCun)却对现有的AI系统提出了尖锐的批评,他认为目前的AI系统“理解能力远不如猫”,缺乏对真实世界的理解和常识。这引发了人们对AI未来发展方向的思考,也为我们探讨AI代码生成工具,以及AI技术对人类社会的影响提供了新的视角。
- Enum 枚举
120153216
enum枚举
原文地址:http://www.cnblogs.com/Kavlez/p/4268601.html Enumeration
于Java 1.5增加的enum type...enum type是由一组固定的常量组成的类型,比如四个季节、扑克花色。在出现enum type之前,通常用一组int常量表示枚举类型。比如这样:
public static final int APPLE_FUJI = 0
- Java8简明教程
bijian1013
javajdk1.8
Java 8已于2014年3月18日正式发布了,新版本带来了诸多改进,包括Lambda表达式、Streams、日期时间API等等。本文就带你领略Java 8的全新特性。
一.允许在接口中有默认方法实现
Java 8 允许我们使用default关键字,为接口声明添
- Oracle表维护 快速备份删除数据
cuisuqiang
oracle索引快速备份删除
我知道oracle表分区,不过那是数据库设计阶段的事情,目前是远水解不了近渴。
当前的数据库表,要求保留一个月数据,且表存在大量录入更新,不存在程序删除。
为了解决频繁查询和更新的瓶颈,我在oracle内根据需要创建了索引。但是随着数据量的增加,一个半月数据就要超千万,此时就算有索引,对高并发的查询和更新来说,让然有所拖累。
为了解决这个问题,我一般一个月会进行一次数据库维护,主要工作就是备
- java多态内存分析
麦田的设计者
java内存分析多态原理接口和抽象类
“ 时针如果可以回头,熟悉那张脸,重温嬉戏这乐园,墙壁的松脱涂鸦已经褪色才明白存在的价值归于记忆。街角小店尚存在吗?这大时代会不会牵挂,过去现在花开怎么会等待。
但有种意外不管痛不痛都有伤害,光阴远远离开,那笑声徘徊与脑海。但这一秒可笑不再可爱,当天心
- Xshell实现Windows上传文件到Linux主机
被触发
windows
经常有这样的需求,我们在Windows下载的软件包,如何上传到远程Linux主机上?还有如何从Linux主机下载软件包到Windows下;之前我的做法现在看来好笨好繁琐,不过也达到了目的,笨人有本方法嘛;
我是怎么操作的:
1、打开一台本地Linux虚拟机,使用mount 挂载Windows的共享文件夹到Linux上,然后拷贝数据到Linux虚拟机里面;(经常第一步都不顺利,无法挂载Windo
- 类的加载ClassLoader
肆无忌惮_
ClassLoader
类加载器ClassLoader是用来将java的类加载到虚拟机中,类加载器负责读取class字节文件到内存中,并将它转为Class的对象(类对象),通过此实例的 newInstance()方法就可以创建出该类的一个对象。
其中重要的方法为findClass(String name)。
如何写一个自己的类加载器呢?
首先写一个便于测试的类Student
- html5写的玫瑰花
知了ing
html5
<html>
<head>
<title>I Love You!</title>
<meta charset="utf-8" />
</head>
<body>
<canvas id="c"></canvas>
- google的ConcurrentLinkedHashmap源代码解析
矮蛋蛋
LRU
原文地址:
http://janeky.iteye.com/blog/1534352
简述
ConcurrentLinkedHashMap 是google团队提供的一个容器。它有什么用呢?其实它本身是对
ConcurrentHashMap的封装,可以用来实现一个基于LRU策略的缓存。详细介绍可以参见
http://code.google.com/p/concurrentlinke
- webservice获取访问服务的ip地址
alleni123
webservice
1. 首先注入javax.xml.ws.WebServiceContext,
@Resource
private WebServiceContext context;
2. 在方法中获取交换请求的对象。
javax.xml.ws.handler.MessageContext mc=context.getMessageContext();
com.sun.net.http
- 菜鸟的java基础提升之道——————>是否值得拥有
百合不是茶
1,c++,java是面向对象编程的语言,将万事万物都看成是对象;java做一件事情关注的是人物,java是c++继承过来的,java没有直接更改地址的权限但是可以通过引用来传值操作地址,java也没有c++中繁琐的操作,java以其优越的可移植型,平台的安全型,高效性赢得了广泛的认同,全世界越来越多的人去学习java,我也是其中的一员
java组成:
- 通过修改Linux服务自动启动指定应用程序
bijian1013
linux
Linux中修改系统服务的命令是chkconfig (check config),命令的详细解释如下: chkconfig
功能说明:检查,设置系统的各种服务。
语 法:chkconfig [ -- add][ -- del][ -- list][系统服务] 或 chkconfig [ -- level <</SPAN>
- spring拦截器的一个简单实例
bijian1013
javaspring拦截器Interceptor
Purview接口
package aop;
public interface Purview {
void checkLogin();
}
Purview接口的实现类PurviesImpl.java
package aop;
public class PurviewImpl implements Purview {
public void check
- [Velocity二]自定义Velocity指令
bit1129
velocity
什么是Velocity指令
在Velocity中,#set,#if, #foreach, #elseif, #parse等,以#开头的称之为指令,Velocity内置的这些指令可以用来做赋值,条件判断,循环控制等脚本语言必备的逻辑控制等语句,Velocity的指令是可扩展的,即用户可以根据实际的需要自定义Velocity指令
自定义指令(Directive)的一般步骤
&nbs
- 【Hive十】Programming Hive学习笔记
bit1129
programming
第二章 Getting Started
1.Hive最大的局限性是什么?一是不支持行级别的增删改(insert, delete, update)二是查询性能非常差(基于Hadoop MapReduce),不适合延迟小的交互式任务三是不支持事务2. Hive MetaStore是干什么的?Hive persists table schemas and other system metadata.
- nginx有选择性进行限制
ronin47
nginx 动静 限制
http {
limit_conn_zone $binary_remote_addr zone=addr:10m;
limit_req_zone $binary_remote_addr zone=one:10m rate=5r/s;...
server {...
location ~.*\.(gif|png|css|js|icon)$ {
- java-4.-在二元树中找出和为某一值的所有路径 .
bylijinnan
java
/*
* 0.use a TwoWayLinkedList to store the path.when the node can't be path,you should/can delete it.
* 1.curSum==exceptedSum:if the lastNode is TreeNode,printPath();delete the node otherwise
- Netty学习笔记
bylijinnan
javanetty
本文是阅读以下两篇文章时:
http://seeallhearall.blogspot.com/2012/05/netty-tutorial-part-1-introduction-to.html
http://seeallhearall.blogspot.com/2012/06/netty-tutorial-part-15-on-channel.html
我的一些笔记
===
- js获取项目路径
cngolon
js
//js获取项目根路径,如: http://localhost:8083/uimcardprj
function getRootPath(){
//获取当前网址,如: http://localhost:8083/uimcardprj/share/meun.jsp
var curWwwPath=window.document.locati
- oracle 的性能优化
cuishikuan
oracleSQL Server
在网上搜索了一些Oracle性能优化的文章,为了更加深层次的巩固[边写边记],也为了可以随时查看,所以发表这篇文章。
1.ORACLE采用自下而上的顺序解析WHERE子句,根据这个原理,表之间的连接必须写在其他WHERE条件之前,那些可以过滤掉最大数量记录的条件必须写在WHERE子句的末尾。(这点本人曾经做过实例验证过,的确如此哦!
- Shell变量和数组使用详解
daizj
linuxshell变量数组
Shell 变量
定义变量时,变量名不加美元符号($,PHP语言中变量需要),如:
your_name="w3cschool.cc"
注意,变量名和等号之间不能有空格,这可能和你熟悉的所有编程语言都不一样。同时,变量名的命名须遵循如下规则:
首个字符必须为字母(a-z,A-Z)。
中间不能有空格,可以使用下划线(_)。
不能使用标点符号。
不能使用ba
- 编程中的一些概念,KISS、DRY、MVC、OOP、REST
dcj3sjt126com
REST
KISS、DRY、MVC、OOP、REST (1)KISS是指Keep It Simple,Stupid(摘自wikipedia),指设计时要坚持简约原则,避免不必要的复杂化。 (2)DRY是指Don't Repeat Yourself(摘自wikipedia),特指在程序设计以及计算中避免重复代码,因为这样会降低灵活性、简洁性,并且可能导致代码之间的矛盾。 (3)OOP 即Object-Orie
- [Android]设置Activity为全屏显示的两种方法
dcj3sjt126com
Activity
1. 方法1:AndroidManifest.xml 里,Activity的 android:theme 指定为" @android:style/Theme.NoTitleBar.Fullscreen" 示例: <application
- solrcloud 部署方式比较
eksliang
solrCloud
solrcloud 的部署其实有两种方式可选,那么我们在实践开发中应该怎样选择呢? 第一种:当启动solr服务器时,内嵌的启动一个Zookeeper服务器,然后将这些内嵌的Zookeeper服务器组成一个集群。 第二种:将Zookeeper服务器独立的配置一个集群,然后将solr交给Zookeeper进行管理
谈谈第一种:每启动一个solr服务器就内嵌的启动一个Zoo
- Java synchronized关键字详解
gqdy365
synchronized
转载自:http://www.cnblogs.com/mengdd/archive/2013/02/16/2913806.html
多线程的同步机制对资源进行加锁,使得在同一个时间,只有一个线程可以进行操作,同步用以解决多个线程同时访问时可能出现的问题。
同步机制可以使用synchronized关键字实现。
当synchronized关键字修饰一个方法的时候,该方法叫做同步方法。
当s
- js实现登录时记住用户名
hw1287789687
记住我记住密码cookie记住用户名记住账号
在页面中如何获取cookie值呢?
如果是JSP的话,可以通过servlet的对象request 获取cookie,可以
参考:http://hw1287789687.iteye.com/blog/2050040
如果要求登录页面是html呢?html页面中如何获取cookie呢?
直接上代码了
页面:loginInput.html
代码:
<!DOCTYPE html PUB
- 开发者必备的 Chrome 扩展
justjavac
chrome
Firebug:不用多介绍了吧https://chrome.google.com/webstore/detail/bmagokdooijbeehmkpknfglimnifench
ChromeSnifferPlus:Chrome 探测器,可以探测正在使用的开源软件或者 js 类库https://chrome.google.com/webstore/detail/chrome-sniffer-pl
- 算法机试题
李亚飞
java算法机试题
在面试机试时,遇到一个算法题,当时没能写出来,最后是同学帮忙解决的。
这道题大致意思是:输入一个数,比如4,。这时会输出:
&n
- 正确配置Linux系统ulimit值
字符串
ulimit
在Linux下面部 署应用的时候,有时候会遇上Socket/File: Can’t open so many files的问题;这个值也会影响服务器的最大并发数,其实Linux是有文件句柄限制的,而且Linux默认不是很高,一般都是1024,生产服务器用 其实很容易就达到这个数量。下面说的是,如何通过正解配置来改正这个系统默认值。因为这个问题是我配置Nginx+php5时遇到了,所以我将这篇归纳进
- hibernate调用返回游标的存储过程
Supanccy2013
javaDAOoracleHibernatejdbc
注:原创作品,转载请注明出处。
上篇博文介绍的是hibernate调用返回单值的存储过程,本片博文说的是hibernate调用返回游标的存储过程。
此此扁博文的存储过程的功能相当于是jdbc调用select 的作用。
1,创建oracle中的包,并在该包中创建的游标类型。
---创建oracle的程
- Spring 4.2新特性-更简单的Application Event
wiselyman
application
1.1 Application Event
Spring 4.1的写法请参考10点睛Spring4.1-Application Event
请对比10点睛Spring4.1-Application Event
使用一个@EventListener取代了实现ApplicationListener接口,使耦合度降低;
1.2 示例
包依赖
<p