【PyTorch】Torchvision Models

文章目录

  • 六、Torchvision Models
    • 1、VGG
      • 1.1 add
      • 1.2 modify
    • 2、Save and Load
      • 2.1 模型结构 + 模型参数
      • 2.2 模型参数(官方推荐)
      • 2.3 Trap

六、Torchvision Models

1、VGG

VGG参考文档:https://pytorch.org/vision/stable/models/vgg.html

【PyTorch】Torchvision Models_第1张图片

VGG16为例:

https://pytorch.org/vision/stable/models/generated/torchvision.models.vgg16.html#torchvision.models.vgg16

【PyTorch】Torchvision Models_第2张图片

ImageNet数据集:

https://pytorch.org/vision/stable/generated/torchvision.datasets.ImageNet.html#torchvision.datasets.ImageNet

ImageNet描述:

https://image-net.org/challenges/LSVRC/index.php

【PyTorch】Torchvision Models_第3张图片

train_data = torchvision.datasets.ImageNet("../data", split="train", transform=torchvision.transforms.ToTensor(),
                                           download=True)

报错:需要手动下载!!!(100多G,还是算了吧)

RuntimeError: The archive ILSVRC2012_devkit_t12.tar.gz is not present in the root directory or is corrupted. You need to download it externally and place it in ../data.

import torchvision

vgg16_false = torchvision.models.vgg16(pretrained=False)  # False 加载网络模型 不需要下载
vgg16_true = torchvision.models.vgg16(pretrained=True)

print(vgg16_true)
VGG(
  (features): Sequential(
    (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU(inplace=True)
    (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (3): ReLU(inplace=True)
    (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (6): ReLU(inplace=True)
    (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (8): ReLU(inplace=True)
    (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (11): ReLU(inplace=True)
    (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (13): ReLU(inplace=True)
    (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (15): ReLU(inplace=True)
    (16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (18): ReLU(inplace=True)
    (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (20): ReLU(inplace=True)
    (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (22): ReLU(inplace=True)
    (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (25): ReLU(inplace=True)
    (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (27): ReLU(inplace=True)
    (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (29): ReLU(inplace=True)
    (30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (avgpool): AdaptiveAvgPool2d(output_size=(7, 7))
  (classifier): Sequential(
    (0): Linear(in_features=25088, out_features=4096, bias=True)
    (1): ReLU(inplace=True)
    (2): Dropout(p=0.5, inplace=False)
    (3): Linear(in_features=4096, out_features=4096, bias=True)
    (4): ReLU(inplace=True)
    (5): Dropout(p=0.5, inplace=False)
    (6): Linear(in_features=4096, out_features=1000, bias=True)
  )
)

out_features=1000,输出为1000个类,如果想要输出10个类,应该如何?

1.1 add

(1)在VGG16中的features中添加add_linear:

import torchvision
from torch import nn

vgg16_true = torchvision.models.vgg16(pretrained=True)
print(vgg16_true)

vgg16_true.add_module('add_linear', nn.Linear(in_features=1000, out_features=10))
print(vgg16_true)
VGG(
  (features): Sequential(
    (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    ...
  )
  (avgpool): AdaptiveAvgPool2d(output_size=(7, 7))
  (classifier): Sequential(
    (0): Linear(in_features=25088, out_features=4096, bias=True)
    ...
    (6): Linear(in_features=4096, out_features=1000, bias=True)
  )
  (add_linear): Linear(in_features=1000, out_features=10, bias=True)
)

(2)在VGG16中的classifier中添加add_linear:

vgg16_true.classifier.add_module('add_linear', nn.Linear(in_features=1000, out_features=10))
VGG(
  (features): Sequential(
    ...
  )
  (avgpool): AdaptiveAvgPool2d(output_size=(7, 7))
  (classifier): Sequential(
    ...
    (6): Linear(in_features=4096, out_features=1000, bias=True)
    (add_linear): Linear(in_features=1000, out_features=10, bias=True)
  )
)

1.2 modify

直接将out_features=1000,修改为,输出100:

vgg16_true.classifier[6] = nn.Linear(in_features=1000, out_features=10)
VGG(
  (features): Sequential(
    ...
  )
  (avgpool): AdaptiveAvgPool2d(output_size=(7, 7))
  (classifier): Sequential(
   ...
    (6): Linear(in_features=1000, out_features=10, bias=True)
  )
)

2、Save and Load

2.1 模型结构 + 模型参数

vgg16 = torchvision.models.vgg16(pretrained=False)
torch.save(vgg16, "../model/vgg16_method1.pth")
vgg16 = torch.load("../model/vgg16_method1.pth")
print(vgg16)
VGG(
  (features): Sequential(
    ...
  )
  (avgpool): AdaptiveAvgPool2d(output_size=(7, 7))
  (classifier): Sequential(
    ...
  )
)

2.2 模型参数(官方推荐)

vgg16 = torchvision.models.vgg16(pretrained=False)
torch.save(vgg16.state_dict(), "../model/vgg16_method2.pth")

查看一下保存的字典:

vgg16 = torch.load("../model/vgg16_method2.pth")
print(vgg16)
OrderedDict([('features.0.weight', tensor([[[[-0.0108,  0.0403, -0.0032],
          [-0.0723,  0.0372, -0.1241],
          [-0.0583, -0.1042, -0.0469]],
          ...
          ...
          ...
          0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
        0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
        0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]))])

加载:

vgg16 = torchvision.models.vgg16(pretrained=False)
vgg16.load_state_dict(torch.load("../model/vgg16_method2.pth"))
print(vgg16)
VGG(
  (features): Sequential(
    ...
  )
  (avgpool): AdaptiveAvgPool2d(output_size=(7, 7))
  (classifier): Sequential(
    ...
  )
)

2.3 Trap

当我们使用第一种方式保存自己定义的网络模型时:

class Liang(nn.Module):
    def __init__(self):
        super(Liang, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)

    def forward(self, x):
        x = self.conv1(x)
        return x


liang = Liang()
torch.save(liang, "../model/Liang.pth")

再使用第一种方式加载模型时:

liang = torch.load("../model/Liang.pth")
print(liang)

会报错:AttributeError: Can't get attribute 'Liang' on >

解决方法一:加上class类

class Liang(nn.Module):
    def __init__(self):
        super(Liang, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)

    def forward(self, x):
        x = self.conv1(x)
        return x


liang = torch.load("../model/Liang.pth")
print(liang)
Liang(
  (conv1): Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1))
)

解决方法二:引入

首先将class Liang类 写入all_class.py 文件中,再使用 from all_class import *,直接引用!

from all_class import *

vgg16 = torchvision.models.vgg16(pretrained=False)
vgg16.load_state_dict(torch.load("../model/vgg16_method2.pth"))

liang = torch.load("../model/Liang.pth")
print(liang)
Liang(
  (conv1): Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1))
)

你可能感兴趣的:(pytorch,深度学习,人工智能,tensorflow,神经网络)