数据集dataset的存放和yolov5差不多,区别在于yolov6不需要images这个文件夹,把图片的文件夹直接放在labels同等级目录即可,
如下图所示:
创建.yaml文件,参考源码的data文件夹下的dataset.yaml文件修改即可,只需要train,val,test相对应的数据集路径,nc所有标注数量以及names标注名称集。如下所示:
# Please insure that your custom_dataset are put in same parent dir with YOLOv6_DIR train: ../custom_dataset/images/train # train images
val: ../custom_dataset/images/val # val images test:
../custom_dataset/images/test # test images (optional)
# whether it is coco dataset, only coco dataset should be set to True. is_coco: False
# Classes nc: 20 # number of classes names: ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair',
'cow', 'diningtable', 'dog',
'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'] # class names
在train.py 里的–data-path的参数修改为自己写的yaml文件路径
default='./data/dataset.yaml', type=str, help='path of dataset') ```
datasets.py
文件内容全部替换成以下内容:
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
from distutils.log import info import glob import os import os.path
as osp import random import json import time import hashlib
from multiprocessing.pool import Pool
import cv2 import numpy as np import torch from PIL import ExifTags,
Image, ImageOps from torch.utils.data import Dataset from tqdm
import tqdm
from .data_augment import (
augment_hsv,
letterbox,
mixup,
random_affine,
mosaic_augmentation, ) from yolov6.utils.events import LOGGER
# Parameters IMG_FORMATS = ["bmp", "jpg", "jpeg", "png", "tif", "tiff", "dng", "webp", "mpo"]
# Get orientation exif tag for k, v in ExifTags.TAGS.items():
if v == "Orientation":
ORIENTATION = k
break
class TrainValDataset(Dataset):
# YOLOv6 train_loader/val_loader, loads images and labels for training and validation
def __init__(
self,
img_dir,
img_size=640,
batch_size=16,
augment=False,
hyp=None,
rect=False,
check_images=False,
check_labels=False,
stride=32,
pad=0.0,
rank=-1,
data_dict=None,
task="train",
):
assert task.lower() in ("train", "val", "speed"), f"Not supported task: {task}"
t1 = time.time()
self.__dict__.update(locals())
self.main_process = self.rank in (-1, 0)
self.task = self.task.capitalize()
self.class_names = data_dict["names"]
self.img_paths, self.labels = self.get_imgs_labels(self.img_dir)
if self.rect:
shapes = [self.img_info[p]["shape"] for p in self.img_paths]
self.shapes = np.array(shapes, dtype=np.float64)
self.batch_indices = np.floor(
np.arange(len(shapes)) / self.batch_size
).astype(
np.int
) # batch indices of each image
self.sort_files_shapes()
t2 = time.time()
if self.main_process:
LOGGER.info(f"%.1fs for dataset initialization." % (t2 - t1))
def __len__(self):
"""Get the length of dataset"""
return len(self.img_paths)
def __getitem__(self, index):
"""Fetching a data sample for a given key.
This function applies mosaic and mixup augments during training.
During validation, letterbox augment is applied.
"""
# Mosaic Augmentation
if self.augment and random.random() < self.hyp["mosaic"]:
img, labels = self.get_mosaic(index)
shapes = None
# MixUp augmentation
if random.random() < self.hyp["mixup"]:
img_other, labels_other = self.get_mosaic(
random.randint(0, len(self.img_paths) - 1)
)
img, labels = mixup(img, labels, img_other, labels_other)
else:
# Load image
img, (h0, w0), (h, w) = self.load_image(index)
# Letterbox
shape = (
self.batch_shapes[self.batch_indices[index]]
if self.rect
else self.img_size
) # final letterboxed shape
img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
labels = self.labels[index].copy()
if labels.size:
w *= ratio
h *= ratio
# new boxes
boxes = np.copy(labels[:, 1:])
boxes[:, 0] = (
w * (labels[:, 1] - labels[:, 3] / 2) + pad[0]
) # top left x
boxes[:, 1] = (
h * (labels[:, 2] - labels[:, 4] / 2) + pad[1]
) # top left y
boxes[:, 2] = (
w * (labels[:, 1] + labels[:, 3] / 2) + pad[0]
) # bottom right x
boxes[:, 3] = (
h * (labels[:, 2] + labels[:, 4] / 2) + pad[1]
) # bottom right y
labels[:, 1:] = boxes
if self.augment:
img, labels = random_affine(
img,
labels,
degrees=self.hyp["degrees"],
translate=self.hyp["translate"],
scale=self.hyp["scale"],
shear=self.hyp["shear"],
new_shape=(self.img_size, self.img_size),
)
if len(labels):
h, w = img.shape[:2]
labels[:, [1, 3]] = labels[:, [1, 3]].clip(0, w - 1e-3) # x1, x2
labels[:, [2, 4]] = labels[:, [2, 4]].clip(0, h - 1e-3) # y1, y2
boxes = np.copy(labels[:, 1:])
boxes[:, 0] = ((labels[:, 1] + labels[:, 3]) / 2) / w # x center
boxes[:, 1] = ((labels[:, 2] + labels[:, 4]) / 2) / h # y center
boxes[:, 2] = (labels[:, 3] - labels[:, 1]) / w # width
boxes[:, 3] = (labels[:, 4] - labels[:, 2]) / h # height
labels[:, 1:] = boxes
if self.augment:
img, labels = self.general_augment(img, labels)
labels_out = torch.zeros((len(labels), 6))
if len(labels):
labels_out[:, 1:] = torch.from_numpy(labels)
# Convert
img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
img = np.ascontiguousarray(img)
return torch.from_numpy(img), labels_out, self.img_paths[index], shapes
def load_image(self, index):
"""Load image.
This function loads image by cv2, resize original image to target shape(img_size) with keeping ratio.
Returns:
Image, original shape of image, resized image shape
"""
path = self.img_paths[index]
im = cv2.imread(path)
assert im is not None, f"Image Not Found {path}, workdir: {os.getcwd()}"
h0, w0 = im.shape[:2] # origin shape
r = self.img_size / max(h0, w0)
if r != 1:
im = cv2.resize(
im,
(int(w0 * r), int(h0 * r)),
interpolation=cv2.INTER_AREA
if r < 1 and not self.augment
else cv2.INTER_LINEAR,
)
return im, (h0, w0), im.shape[:2]
@staticmethod
def collate_fn(batch):
"""Merges a list of samples to form a mini-batch of Tensor(s)"""
img, label, path, shapes = zip(*batch)
for i, l in enumerate(label):
l[:, 0] = i # add target image index for build_targets()
return torch.stack(img, 0), torch.cat(label, 0), path, shapes
def get_imgs_labels(self, img_dir):
assert osp.exists(img_dir), f"{img_dir} is an invalid directory path!"
valid_img_record = osp.join(
osp.dirname(img_dir), "." + osp.basename(img_dir) + ".json"
)
NUM_THREADS = min(8, os.cpu_count())
img_paths = glob.glob(osp.join(img_dir, "*"), recursive=True)
img_paths = sorted(
p for p in img_paths if p.split(".")[-1].lower() in IMG_FORMATS
)
assert img_paths, f"No images found in {img_dir}."
img_hash = self.get_hash(img_paths)
if osp.exists(valid_img_record):
with open(valid_img_record, "r") as f:
cache_info = json.load(f)
if "image_hash" in cache_info and cache_info["image_hash"] == img_hash:
img_info = cache_info["information"]
else:
self.check_images = True
else:
self.check_images = True
# check images
if self.check_images and self.main_process:
img_info = {}
nc, msgs = 0, [] # number corrupt, messages
LOGGER.info(
f"{self.task}: Checking formats of images with {NUM_THREADS} process(es): "
)
with Pool(NUM_THREADS) as pool:
pbar = tqdm(
pool.imap(TrainValDataset.check_image, img_paths),
total=len(img_paths),
)
for img_path, shape_per_img, nc_per_img, msg in pbar:
if nc_per_img == 0: # not corrupted
img_info[img_path] = {"shape": shape_per_img}
nc += nc_per_img
if msg:
msgs.append(msg)
pbar.desc = f"{nc} image(s) corrupted"
pbar.close()
if msgs:
LOGGER.info("\n".join(msgs))
cache_info = {"information": img_info, "image_hash": img_hash}
# save valid image paths.
with open(valid_img_record, "w") as f:
json.dump(cache_info, f)
img_info = {}
self.change_json(valid_img_record)
with open(valid_img_record, "r") as f:
cache_info = json.load(f)
if "image_hash" in cache_info and cache_info["image_hash"] == img_hash:
img_info = cache_info["information"]
# check and load anns
# label_dir = osp.join(
# osp.dirname(osp.dirname(img_dir)), "labels", osp.basename(img_dir)
# )
label_dir = osp.join(
osp.dirname(img_dir), "labels", osp.basename(img_dir)
)
assert osp.exists(label_dir), f"{label_dir} is an invalid directory path!"
img_paths = list(img_info.keys())
label_paths = sorted(
osp.join(label_dir, osp.splitext(osp.basename(p))[0] + ".txt")
for p in img_paths
)
label_hash = self.get_hash(label_paths)
if "label_hash" not in cache_info or cache_info["label_hash"] != label_hash:
self.check_labels = True
if self.check_labels:
cache_info["label_hash"] = label_hash
nm, nf, ne, nc, msgs = 0, 0, 0, 0, [] # number corrupt, messages
LOGGER.info(
f"{self.task}: Checking formats of labels with {NUM_THREADS} process(es): "
)
with Pool(NUM_THREADS) as pool:
pbar = pool.imap(
TrainValDataset.check_label_files, zip(img_paths, label_paths)
)
pbar = tqdm(pbar, total=len(label_paths)) if self.main_process else pbar
for (
img_path,
labels_per_file,
nc_per_file,
nm_per_file,
nf_per_file,
ne_per_file,
msg,
) in pbar:
if img_path:
img_info[img_path]["labels"] = labels_per_file
else:
try:
img_info.pop(img_path)
except:
pass
nc += nc_per_file
nm += nm_per_file
nf += nf_per_file
ne += ne_per_file
if msg:
msgs.append(msg)
if self.main_process:
pbar.desc = f"{nf} label(s) found, {nm} label(s) missing, {ne} label(s) empty, {nc} invalid label files"
if self.main_process:
pbar.close()
with open(valid_img_record, "w") as f:
json.dump(cache_info, f)
self.change_json(valid_img_record)
if msgs:
LOGGER.info("\n".join(msgs))
if nf == 0:
LOGGER.warning(
f"WARNING: No labels found in {osp.dirname(self.img_paths[0])}. "
)
if self.task.lower() == "val":
if self.data_dict.get("is_coco", False): # use original json file when evaluating on coco dataset.
assert osp.exists(self.data_dict["anno_path"]), "Eval on coco dataset must provide valid path of the annotation file
in config file: data/coco.yaml"
else:
assert (
self.class_names
), "Class names is required when converting labels to coco format for evaluating."
save_dir = osp.join(osp.dirname(osp.dirname(img_dir)), "annotations")
if not osp.exists(save_dir):
os.mkdir(save_dir)
save_path = osp.join(
save_dir, "instances_" + osp.basename(img_dir) + ".json"
)
TrainValDataset.generate_coco_format_labels(
img_info, self.class_names, save_path
)
img_paths, labels = list(
zip(
*[
(
img_path,
np.array(info['labels'], dtype=np.float32)
if info['labels']
else np.zeros((0, 5), dtype=np.float32),
)
for img_path, info in img_info.items()
]
)
)
self.img_info = img_info
LOGGER.info(
f"{self.task}: Final numbers of valid images: {len(img_paths)}/ labels: {len(labels)}. "
)
return img_paths, labels
def get_mosaic(self, index):
"""Gets images and labels after mosaic augments"""
indices = [index] + random.choices(
range(0, len(self.img_paths)), k=3
) # 3 additional image indices
random.shuffle(indices)
imgs, hs, ws, labels = [], [], [], []
for index in indices:
img, _, (h, w) = self.load_image(index)
labels_per_img = self.labels[index]
imgs.append(img)
hs.append(h)
ws.append(w)
labels.append(labels_per_img)
img, labels = mosaic_augmentation(self.img_size, imgs, hs, ws, labels, self.hyp)
return img, labels
def change_json(self, filepath):
file_path = filepath
new_path = filepath
filename = file_path.split("\\")[-1]
filenamea = filename.replace(".json","").replace(".","")
with open(file_path, "r") as f:
file = json.load(f)
images_file = file["information"]
image_hash = file["image_hash"]
images_file_keys = list(images_file.keys())
for f in range(len(images_file_keys)):
d = []
img_path = images_file_keys[f]
txt_path = img_path.replace("jpg","txt")
txt_path = osp.join(osp.dirname(txt_path), osp.basename(txt_path))
txt_path = txt_path.replace("%s"%filenamea,"labels/%s"%filenamea)
with open(txt_path,"r") as t:
t = t.readlines()
for h in range(len(t)):
hh = t[h]
hh = hh.replace("\n","").split(" ")
for i in range(len(hh)):
hh[i] = float(hh[i])
d.append(hh)
images_file[img_path]["labels"] = d
write_fict = {"information":images_file,"image_hash":image_hash}
with open(new_path, 'w') as write_f:
write_f.write(json.dumps(write_fict, indent=4, ensure_ascii=False))
def general_augment(self, img, labels):
"""Gets images and labels after general augment
This function applies hsv, random ud-flip and random lr-flips augments.
"""
nl = len(labels)
# HSV color-space
augment_hsv(
img,
hgain=self.hyp["hsv_h"],
sgain=self.hyp["hsv_s"],
vgain=self.hyp["hsv_v"],
)
# Flip up-down
if random.random() < self.hyp["flipud"]:
img = np.flipud(img)
if nl:
labels[:, 2] = 1 - labels[:, 2]
# Flip left-right
if random.random() < self.hyp["fliplr"]:
img = np.fliplr(img)
if nl:
labels[:, 1] = 1 - labels[:, 1]
return img, labels
def sort_files_shapes(self):
# Sort by aspect ratio
batch_num = self.batch_indices[-1] + 1
s = self.shapes # wh
ar = s[:, 1] / s[:, 0] # aspect ratio
irect = ar.argsort()
self.img_paths = [self.img_paths[i] for i in irect]
self.labels = [self.labels[i] for i in irect]
self.shapes = s[irect] # wh
ar = ar[irect]
# Set training image shapes
shapes = [[1, 1]] * batch_num
for i in range(batch_num):
ari = ar[self.batch_indices == i]
mini, maxi = ari.min(), ari.max()
if maxi < 1:
shapes[i] = [maxi, 1]
elif mini > 1:
shapes[i] = [1, 1 / mini]
self.batch_shapes = (
np.ceil(np.array(shapes) * self.img_size / self.stride + self.pad).astype(
np.int
)
* self.stride
)
@staticmethod
def check_image(im_file):
# verify an image.
nc, msg = 0, ""
try:
im = Image.open(im_file)
im.verify() # PIL verify
shape = im.size # (width, height)
im_exif = im._getexif()
if im_exif and ORIENTATION in im_exif:
rotation = im_exif[ORIENTATION]
if rotation in (6, 8):
shape = (shape[1], shape[0])
assert (shape[0] > 9) & (shape[1] > 9), f"image size {shape} <10 pixels"
assert im.format.lower() in IMG_FORMATS, f"invalid image format {im.format}"
if im.format.lower() in ("jpg", "jpeg"):
with open(im_file, "rb") as f:
f.seek(-2, 2)
if f.read() != b"\xff\xd9": # corrupt JPEG
ImageOps.exif_transpose(Image.open(im_file)).save(
im_file, "JPEG", subsampling=0, quality=100
)
msg += f"WARNING: {im_file}: corrupt JPEG restored and saved"
return im_file, shape, nc, msg
except Exception as e:
nc = 1
msg = f"WARNING: {im_file}: ignoring corrupt image: {e}"
return im_file, None, nc, msg
@staticmethod
def check_label_files(args):
img_path, lb_path = args
nm, nf, ne, nc, msg = 0, 0, 0, 0, "" # number (missing, found, empty, message
try:
if osp.exists(lb_path):
nf = 1 # label found
with open(lb_path, "r") as f:
labels = [
x.split() for x in f.read().strip().splitlines() if len(x)
]
labels = np.array(labels, dtype=np.float32)
if len(labels):
assert all(
len(l) == 5 for l in labels
), f"{lb_path}: wrong label format."
assert (
labels >= 0
).all(), f"{lb_path}: Label values error: all values in label file must > 0"
assert (
labels[:, 1:] <= 1
).all(), f"{lb_path}: Label values error: all coordinates must be normalized"
_, indices = np.unique(labels, axis=0, return_index=True)
if len(indices) < len(labels): # duplicate row check
labels = labels[indices] # remove duplicates
msg += f"WARNING: {lb_path}: {len(labels) - len(indices)} duplicate labels removed"
labels = labels.tolist()
else:
ne = 1 # label empty
labels = []
else:
nm = 1 # label missing
labels = []
return img_path, labels, nc, nm, nf, ne, msg
except Exception as e:
nc = 1
msg = f"WARNING: {lb_path}: ignoring invalid labels: {e}"
return None, None, nc, nm, nf, ne, msg
@staticmethod
def generate_coco_format_labels(img_info, class_names, save_path):
# for evaluation with pycocotools
dataset = {"categories": [], "annotations": [], "images": []}
for i, class_name in enumerate(class_names):
dataset["categories"].append(
{"id": i, "name": class_name, "supercategory": ""}
)
ann_id = 0
LOGGER.info(f"Convert to COCO format")
for i, (img_path, info) in enumerate(tqdm(img_info.items())):
labels = info["labels"] if info["labels"] else []
img_id = osp.splitext(osp.basename(img_path))[0]
img_id = int(img_id) if img_id.isnumeric() else img_id
img_w, img_h = info["shape"]
dataset["images"].append(
{
"file_name": os.path.basename(img_path),
"id": img_id,
"width": img_w,
"height": img_h,
}
)
if labels:
for label in labels:
c, x, y, w, h = label[:5]
# convert x,y,w,h to x1,y1,x2,y2
x1 = (x - w / 2) * img_w
y1 = (y - h / 2) * img_h
x2 = (x + w / 2) * img_w
y2 = (y + h / 2) * img_h
# cls_id starts from 0
cls_id = int(c)
w = max(0, x2 - x1)
h = max(0, y2 - y1)
dataset["annotations"].append(
{
"area": h * w,
"bbox": [x1, y1, w, h],
"category_id": cls_id,
"id": ann_id,
"image_id": img_id,
"iscrowd": 0,
# mask
"segmentation": [],
}
)
ann_id += 1
with open(save_path, "w") as f:
json.dump(dataset, f)
LOGGER.info(
f"Convert to COCO format finished. Resutls saved in {save_path}"
)
@staticmethod
def get_hash(paths):
"""Get the hash value of paths"""
assert isinstance(paths, list), "Only support list currently."
h = hashlib.md5("".join(paths).encode())
return h.hexdigest()
做完上述的操作和替换,就可以执行python tools/train.py
开始训练。
等待训练结束即可用自己模型来识别啦!
yolov6如何调用摄像头实时识别?
调用摄像头识别结果: