【目标检测--yolov6如何训练自己的数据集】

yolov6 自制数据集训练自己的模型

  1. 数据集dataset的存放和yolov5差不多,区别在于yolov6不需要images这个文件夹,把图片的文件夹直接放在labels同等级目录即可,
    如下图所示:

    【目标检测--yolov6如何训练自己的数据集】_第1张图片

  2. 创建.yaml文件,参考源码的data文件夹下的dataset.yaml文件修改即可,只需要train,val,test相对应的数据集路径,nc所有标注数量以及names标注名称集。如下所示:

    # Please insure that your custom_dataset are put in same parent dir with YOLOv6_DIR train: ../custom_dataset/images/train # train images
    val: ../custom_dataset/images/val # val images test:
    ../custom_dataset/images/test # test images (optional)
    
    # whether it is coco dataset, only coco dataset should be set to True. is_coco: False
    # Classes nc: 20  # number of classes names: ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair',
    'cow', 'diningtable', 'dog',
            'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor']  # class names
    
    
  3. 在train.py 里的–data-path的参数修改为自己写的yaml文件路径

    default='./data/dataset.yaml', type=str, help='path of dataset') ```
    
  4. datasets.py文件内容全部替换成以下内容:

    #!/usr/bin/env python3
    # -*- coding:utf-8 -*-
    
    from distutils.log import info import glob import os import os.path
    as osp import random import json import time import hashlib
    
    from multiprocessing.pool import Pool
    
    import cv2 import numpy as np import torch from PIL import ExifTags,
    Image, ImageOps from torch.utils.data import Dataset from tqdm
    import tqdm
    
    from .data_augment import (
        augment_hsv,
        letterbox,
        mixup,
        random_affine,
        mosaic_augmentation, ) from yolov6.utils.events import LOGGER
    
    # Parameters IMG_FORMATS = ["bmp", "jpg", "jpeg", "png", "tif", "tiff", "dng", "webp", "mpo"]
    # Get orientation exif tag for k, v in ExifTags.TAGS.items():
        if v == "Orientation":
            ORIENTATION = k
            break
    
    
    class TrainValDataset(Dataset):
        # YOLOv6 train_loader/val_loader, loads images and labels for training and validation
        def __init__(
            self,
            img_dir,
            img_size=640,
            batch_size=16,
            augment=False,
            hyp=None,
            rect=False,
            check_images=False,
            check_labels=False,
            stride=32,
            pad=0.0,
            rank=-1,
            data_dict=None,
            task="train",
        ):
            assert task.lower() in ("train", "val", "speed"), f"Not supported task: {task}"
            t1 = time.time()
            self.__dict__.update(locals())
            self.main_process = self.rank in (-1, 0)
            self.task = self.task.capitalize()
            self.class_names = data_dict["names"]
            self.img_paths, self.labels = self.get_imgs_labels(self.img_dir)
            if self.rect:
                shapes = [self.img_info[p]["shape"] for p in self.img_paths]
                self.shapes = np.array(shapes, dtype=np.float64)
                self.batch_indices = np.floor(
                    np.arange(len(shapes)) / self.batch_size
                ).astype(
                    np.int
                )  # batch indices of each image
                self.sort_files_shapes()
            t2 = time.time()
            if self.main_process:
                LOGGER.info(f"%.1fs for dataset initialization." % (t2 - t1))
    
        def __len__(self):
            """Get the length of dataset"""
            return len(self.img_paths)
    
        def __getitem__(self, index):
            """Fetching a data sample for a given key.
            This function applies mosaic and mixup augments during training.
            During validation, letterbox augment is applied.
            """
            # Mosaic Augmentation
            if self.augment and random.random() < self.hyp["mosaic"]:
                img, labels = self.get_mosaic(index)
                shapes = None
    
                # MixUp augmentation
                if random.random() < self.hyp["mixup"]:
                    img_other, labels_other = self.get_mosaic(
                        random.randint(0, len(self.img_paths) - 1)
                    )
                    img, labels = mixup(img, labels, img_other, labels_other)
    
            else:
                # Load image
                img, (h0, w0), (h, w) = self.load_image(index)
    
                # Letterbox
                shape = (
                    self.batch_shapes[self.batch_indices[index]]
                    if self.rect
                    else self.img_size
                )  # final letterboxed shape
                img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
                shapes = (h0, w0), ((h / h0, w / w0), pad)  # for COCO mAP rescaling
    
                labels = self.labels[index].copy()
                if labels.size:
                    w *= ratio
                    h *= ratio
                    # new boxes
                    boxes = np.copy(labels[:, 1:])
                    boxes[:, 0] = (
                        w * (labels[:, 1] - labels[:, 3] / 2) + pad[0]
                    )  # top left x
                    boxes[:, 1] = (
                        h * (labels[:, 2] - labels[:, 4] / 2) + pad[1]
                    )  # top left y
                    boxes[:, 2] = (
                        w * (labels[:, 1] + labels[:, 3] / 2) + pad[0]
                    )  # bottom right x
                    boxes[:, 3] = (
                        h * (labels[:, 2] + labels[:, 4] / 2) + pad[1]
                    )  # bottom right y
                    labels[:, 1:] = boxes
    
                if self.augment:
                    img, labels = random_affine(
                        img,
                        labels,
                        degrees=self.hyp["degrees"],
                        translate=self.hyp["translate"],
                        scale=self.hyp["scale"],
                        shear=self.hyp["shear"],
                        new_shape=(self.img_size, self.img_size),
                    )
    
            if len(labels):
                h, w = img.shape[:2]
    
                labels[:, [1, 3]] = labels[:, [1, 3]].clip(0, w - 1e-3)  # x1, x2
                labels[:, [2, 4]] = labels[:, [2, 4]].clip(0, h - 1e-3)  # y1, y2
    
                boxes = np.copy(labels[:, 1:])
                boxes[:, 0] = ((labels[:, 1] + labels[:, 3]) / 2) / w  # x center
                boxes[:, 1] = ((labels[:, 2] + labels[:, 4]) / 2) / h  # y center
                boxes[:, 2] = (labels[:, 3] - labels[:, 1]) / w  # width
                boxes[:, 3] = (labels[:, 4] - labels[:, 2]) / h  # height
                labels[:, 1:] = boxes
    
            if self.augment:
                img, labels = self.general_augment(img, labels)
    
            labels_out = torch.zeros((len(labels), 6))
            if len(labels):
                labels_out[:, 1:] = torch.from_numpy(labels)
    
            # Convert
            img = img.transpose((2, 0, 1))[::-1]  # HWC to CHW, BGR to RGB
            img = np.ascontiguousarray(img)
    
            return torch.from_numpy(img), labels_out, self.img_paths[index], shapes
    
        def load_image(self, index):
            """Load image.
            This function loads image by cv2, resize original image to target shape(img_size) with keeping ratio.
    
            Returns:
                Image, original shape of image, resized image shape
            """
            path = self.img_paths[index]
            im = cv2.imread(path)
            assert im is not None, f"Image Not Found {path}, workdir: {os.getcwd()}"
    
            h0, w0 = im.shape[:2]  # origin shape
            r = self.img_size / max(h0, w0)
            if r != 1:
                im = cv2.resize(
                    im,
                    (int(w0 * r), int(h0 * r)),
                    interpolation=cv2.INTER_AREA
                    if r < 1 and not self.augment
                    else cv2.INTER_LINEAR,
                )
            return im, (h0, w0), im.shape[:2]
    
        @staticmethod
        def collate_fn(batch):
            """Merges a list of samples to form a mini-batch of Tensor(s)"""
            img, label, path, shapes = zip(*batch)
            for i, l in enumerate(label):
                l[:, 0] = i  # add target image index for build_targets()
            return torch.stack(img, 0), torch.cat(label, 0), path, shapes
    
        def get_imgs_labels(self, img_dir):
            assert osp.exists(img_dir), f"{img_dir} is an invalid directory path!"
            valid_img_record = osp.join(
                osp.dirname(img_dir), "." + osp.basename(img_dir) + ".json"
            )
    
            NUM_THREADS = min(8, os.cpu_count())
    
            img_paths = glob.glob(osp.join(img_dir, "*"), recursive=True)
            img_paths = sorted(
                p for p in img_paths if p.split(".")[-1].lower() in IMG_FORMATS
            )
            assert img_paths, f"No images found in {img_dir}."
    
            img_hash = self.get_hash(img_paths)
            if osp.exists(valid_img_record):
                with open(valid_img_record, "r") as f:
                    cache_info = json.load(f)
                    if "image_hash" in cache_info and cache_info["image_hash"] == img_hash:
                        img_info = cache_info["information"]
                    else:
                        self.check_images = True
            else:
                self.check_images = True
    
            # check images 
            if self.check_images and self.main_process:
                img_info = {}
                nc, msgs = 0, []  # number corrupt, messages
                LOGGER.info(
                    f"{self.task}: Checking formats of images with {NUM_THREADS} process(es): "
                )
                with Pool(NUM_THREADS) as pool:
                    pbar = tqdm(
                        pool.imap(TrainValDataset.check_image, img_paths),
                        total=len(img_paths),
                    )
                    for img_path, shape_per_img, nc_per_img, msg in pbar:
                        if nc_per_img == 0:  # not corrupted
                            img_info[img_path] = {"shape": shape_per_img}
                        nc += nc_per_img
                        if msg:
                            msgs.append(msg)
                        pbar.desc = f"{nc} image(s) corrupted"
                pbar.close()
                if msgs:
                    LOGGER.info("\n".join(msgs))
    
                cache_info = {"information": img_info, "image_hash": img_hash}
                # save valid image paths.
                with open(valid_img_record, "w") as f:
                    json.dump(cache_info, f)
                img_info = {}
                self.change_json(valid_img_record)
                with open(valid_img_record, "r") as f:
                    cache_info = json.load(f)
                    if "image_hash" in cache_info and cache_info["image_hash"] == img_hash:
                        img_info = cache_info["information"]
    
            # check and load anns 
            # label_dir = osp.join(
            #     osp.dirname(osp.dirname(img_dir)), "labels", osp.basename(img_dir)
            # )
            label_dir = osp.join(
                osp.dirname(img_dir), "labels", osp.basename(img_dir)
            )
            
            assert osp.exists(label_dir), f"{label_dir} is an invalid directory path!"
    
            img_paths = list(img_info.keys())
            label_paths = sorted(
                osp.join(label_dir, osp.splitext(osp.basename(p))[0] + ".txt")
                for p in img_paths
            )
    
            label_hash = self.get_hash(label_paths)
            if "label_hash" not in cache_info or cache_info["label_hash"] != label_hash:
                self.check_labels = True
    
            if self.check_labels:
                cache_info["label_hash"] = label_hash
                nm, nf, ne, nc, msgs = 0, 0, 0, 0, []  # number corrupt, messages
                LOGGER.info(
                    f"{self.task}: Checking formats of labels with {NUM_THREADS} process(es): "
                )
                with Pool(NUM_THREADS) as pool:
                    pbar = pool.imap(
                        TrainValDataset.check_label_files, zip(img_paths, label_paths)
                    )
                    pbar = tqdm(pbar, total=len(label_paths)) if self.main_process else pbar
                    
                    for (
                        img_path,
                        labels_per_file,
                        nc_per_file,
                        nm_per_file,
                        nf_per_file,
                        ne_per_file,
                        msg,
                    ) in pbar:
                        if img_path:
                            img_info[img_path]["labels"] = labels_per_file
                        else:
                        	try:
                            	img_info.pop(img_path)
                            except:
                                 pass
    
                        nc += nc_per_file
                        nm += nm_per_file
                        nf += nf_per_file
                        ne += ne_per_file
                        if msg:
                            msgs.append(msg)
                        if self.main_process:
                            pbar.desc = f"{nf} label(s) found, {nm} label(s) missing, {ne} label(s) empty, {nc} invalid label files"
                
                if self.main_process:
                    pbar.close()
                    with open(valid_img_record, "w") as f:
                        json.dump(cache_info, f)
                    self.change_json(valid_img_record)
                if msgs:
                    LOGGER.info("\n".join(msgs))
                if nf == 0:
                    LOGGER.warning(
                        f"WARNING: No labels found in {osp.dirname(self.img_paths[0])}. "
                    )
    
            if self.task.lower() == "val":
                if self.data_dict.get("is_coco", False): # use original json file when evaluating on coco dataset.
                    assert osp.exists(self.data_dict["anno_path"]), "Eval on coco dataset must provide valid path of the annotation file
    in config file: data/coco.yaml"
                else:
                    assert (
                        self.class_names
                    ), "Class names is required when converting labels to coco format for evaluating."
                    save_dir = osp.join(osp.dirname(osp.dirname(img_dir)), "annotations")
                    if not osp.exists(save_dir):
                        os.mkdir(save_dir)
                    save_path = osp.join(
                        save_dir, "instances_" + osp.basename(img_dir) + ".json"
                    )
                    TrainValDataset.generate_coco_format_labels(
                        img_info, self.class_names, save_path
                    )
    
            img_paths, labels = list(
                zip(
                    *[
                        (   
                            img_path,
                            np.array(info['labels'], dtype=np.float32)
                            if info['labels']
                            else np.zeros((0, 5), dtype=np.float32),
                        )
                        for img_path, info in img_info.items()
                        
                    ]
                )
            )
            self.img_info = img_info
            LOGGER.info(
                f"{self.task}: Final numbers of valid images: {len(img_paths)}/ labels: {len(labels)}. "
            )
            return img_paths, labels
    
        def get_mosaic(self, index):
            """Gets images and labels after mosaic augments"""
            indices = [index] + random.choices(
                range(0, len(self.img_paths)), k=3
            )  # 3 additional image indices
            random.shuffle(indices)
            imgs, hs, ws, labels = [], [], [], []
            for index in indices:
                img, _, (h, w) = self.load_image(index)
                labels_per_img = self.labels[index]
                imgs.append(img)
                hs.append(h)
                ws.append(w)
                labels.append(labels_per_img)
            img, labels = mosaic_augmentation(self.img_size, imgs, hs, ws, labels, self.hyp)
            return img, labels
    
    
        def change_json(self, filepath):
            file_path = filepath
            new_path = filepath   
            filename = file_path.split("\\")[-1]
            filenamea = filename.replace(".json","").replace(".","")
            with open(file_path, "r") as f:
                file = json.load(f)
    
            images_file = file["information"]
            image_hash = file["image_hash"]
            images_file_keys = list(images_file.keys())
    
            for f in range(len(images_file_keys)):
                d = []
                img_path = images_file_keys[f]
                txt_path = img_path.replace("jpg","txt")
                txt_path = osp.join(osp.dirname(txt_path), osp.basename(txt_path))
                txt_path = txt_path.replace("%s"%filenamea,"labels/%s"%filenamea)
                with open(txt_path,"r") as t:
                    t = t.readlines()
                for h in range(len(t)):
                    hh = t[h]
                    hh = hh.replace("\n","").split(" ")
                    for i in range(len(hh)):
                        hh[i] = float(hh[i])
                    d.append(hh)
                images_file[img_path]["labels"] = d
            write_fict = {"information":images_file,"image_hash":image_hash}
            with open(new_path, 'w') as write_f:
                write_f.write(json.dumps(write_fict, indent=4, ensure_ascii=False))
                
        def general_augment(self, img, labels):
            """Gets images and labels after general augment
            This function applies hsv, random ud-flip and random lr-flips augments.
            """
            nl = len(labels)
    
            # HSV color-space
            augment_hsv(
                img,
                hgain=self.hyp["hsv_h"],
                sgain=self.hyp["hsv_s"],
                vgain=self.hyp["hsv_v"],
            )
    
            # Flip up-down
            if random.random() < self.hyp["flipud"]:
                img = np.flipud(img)
                if nl:
                    labels[:, 2] = 1 - labels[:, 2]
    
            # Flip left-right
            if random.random() < self.hyp["fliplr"]:
                img = np.fliplr(img)
                if nl:
                    labels[:, 1] = 1 - labels[:, 1]
    
            return img, labels
    
        def sort_files_shapes(self):
            # Sort by aspect ratio
            batch_num = self.batch_indices[-1] + 1
            s = self.shapes  # wh
            ar = s[:, 1] / s[:, 0]  # aspect ratio
            irect = ar.argsort()
            self.img_paths = [self.img_paths[i] for i in irect]
            self.labels = [self.labels[i] for i in irect]
            self.shapes = s[irect]  # wh
            ar = ar[irect]
    
            # Set training image shapes
            shapes = [[1, 1]] * batch_num
            for i in range(batch_num):
                ari = ar[self.batch_indices == i]
                mini, maxi = ari.min(), ari.max()
                if maxi < 1:
                    shapes[i] = [maxi, 1]
                elif mini > 1:
                    shapes[i] = [1, 1 / mini]
            self.batch_shapes = (
                np.ceil(np.array(shapes) * self.img_size / self.stride + self.pad).astype(
                    np.int
                )
                * self.stride
            )
    
        @staticmethod
        def check_image(im_file):
            # verify an image.
            nc, msg = 0, ""
            try:
                im = Image.open(im_file)
                im.verify()  # PIL verify
                shape = im.size  # (width, height)
                im_exif = im._getexif()
                if im_exif and ORIENTATION in im_exif:
                    rotation = im_exif[ORIENTATION]
                    if rotation in (6, 8):
                        shape = (shape[1], shape[0])
    
                assert (shape[0] > 9) & (shape[1] > 9), f"image size {shape} <10 pixels"
                assert im.format.lower() in IMG_FORMATS, f"invalid image format {im.format}"
                if im.format.lower() in ("jpg", "jpeg"):
                    with open(im_file, "rb") as f:
                        f.seek(-2, 2)
                        if f.read() != b"\xff\xd9":  # corrupt JPEG
                            ImageOps.exif_transpose(Image.open(im_file)).save(
                                im_file, "JPEG", subsampling=0, quality=100
                            )
                            msg += f"WARNING: {im_file}: corrupt JPEG restored and saved"
                return im_file, shape, nc, msg
            except Exception as e:
                nc = 1
                msg = f"WARNING: {im_file}: ignoring corrupt image: {e}"
                return im_file, None, nc, msg
    
        @staticmethod
        def check_label_files(args):
            img_path, lb_path = args
            nm, nf, ne, nc, msg = 0, 0, 0, 0, ""  # number (missing, found, empty, message
            try:
                if osp.exists(lb_path):
                    nf = 1  # label found
                    with open(lb_path, "r") as f:
                        labels = [
                            x.split() for x in f.read().strip().splitlines() if len(x)
                        ]
                        labels = np.array(labels, dtype=np.float32)
                    if len(labels):
                        assert all(
                            len(l) == 5 for l in labels
                        ), f"{lb_path}: wrong label format."
                        assert (
                            labels >= 0
                        ).all(), f"{lb_path}: Label values error: all values in label file must > 0"
                        assert (
                            labels[:, 1:] <= 1
                        ).all(), f"{lb_path}: Label values error: all coordinates must be normalized"
    
                        _, indices = np.unique(labels, axis=0, return_index=True)
                        if len(indices) < len(labels):  # duplicate row check
                            labels = labels[indices]  # remove duplicates
                            msg += f"WARNING: {lb_path}: {len(labels) - len(indices)} duplicate labels removed"
                        labels = labels.tolist()
                    else:
                        ne = 1  # label empty
                        labels = []
                else:
                    nm = 1  # label missing
                    labels = []
    
                return img_path, labels, nc, nm, nf, ne, msg
            except Exception as e:
                nc = 1
                msg = f"WARNING: {lb_path}: ignoring invalid labels: {e}"
                return None, None, nc, nm, nf, ne, msg
    
        @staticmethod
        def generate_coco_format_labels(img_info, class_names, save_path):
            # for evaluation with pycocotools
            dataset = {"categories": [], "annotations": [], "images": []}
            for i, class_name in enumerate(class_names):
                dataset["categories"].append(
                    {"id": i, "name": class_name, "supercategory": ""}
                )
    
            ann_id = 0
            LOGGER.info(f"Convert to COCO format")
            for i, (img_path, info) in enumerate(tqdm(img_info.items())):
                labels = info["labels"] if info["labels"] else []
                img_id = osp.splitext(osp.basename(img_path))[0]
                img_id = int(img_id) if img_id.isnumeric() else img_id
                img_w, img_h = info["shape"]
                dataset["images"].append(
                    {
                        "file_name": os.path.basename(img_path),
                        "id": img_id,
                        "width": img_w,
                        "height": img_h,
                    }
                )
                if labels:
                    for label in labels:
                        c, x, y, w, h = label[:5]
                        # convert x,y,w,h to x1,y1,x2,y2
                        x1 = (x - w / 2) * img_w
                        y1 = (y - h / 2) * img_h
                        x2 = (x + w / 2) * img_w
                        y2 = (y + h / 2) * img_h
                        # cls_id starts from 0
                        cls_id = int(c)
                        w = max(0, x2 - x1)
                        h = max(0, y2 - y1)
                        dataset["annotations"].append(
                            {
                                "area": h * w,
                                "bbox": [x1, y1, w, h],
                                "category_id": cls_id,
                                "id": ann_id,
                                "image_id": img_id,
                                "iscrowd": 0,
                                # mask
                                "segmentation": [],
                            }
                        )
                        ann_id += 1
    
            with open(save_path, "w") as f:
                json.dump(dataset, f)
                LOGGER.info(
                    f"Convert to COCO format finished. Resutls saved in {save_path}"
                )
    
        @staticmethod
        def get_hash(paths):
            """Get the hash value of paths"""
            assert isinstance(paths, list), "Only support list currently."
            h = hashlib.md5("".join(paths).encode())
            return h.hexdigest()
    
    
  5. 做完上述的操作和替换,就可以执行python tools/train.py开始训练。

  6. 成功运行后的图如下所示:【目标检测--yolov6如何训练自己的数据集】_第2张图片

  7. 等待训练结束即可用自己模型来识别啦!

  8. yolov6如何调用摄像头实时识别?

  9. 调用摄像头识别结果:

【目标检测--yolov6如何训练自己的数据集】_第3张图片

你可能感兴趣的:(目标检测,深度学习,人工智能,python)