import os
import model
import tensorflow as tf
import input_data
data = input_data.read_data_sets('MNIST_data', one_hot=True)
with tf.variable_scope("convolutional"):
x = tf.placeholder(tf.float32, [None, 784], name='x')
keep_prob = tf.placeholder(tf.float32)
y, variables = model.convolutional(x, keep_prob)
# train
y_ = tf.placeholder(tf.float32, [None, 10], name='y')
cross_entropy = -tf.reduce_sum(y_ * tf.log(y))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
saver = tf.train.Saver(variables)
with tf.Session() as sess:
mergerd_summary_op = tf.summary.merge_all()
summary_writer = tf.summary.FileWriter('/tmp/mnist_log/1', sess.graph)
summary_writer.add_graph(sess.graph)
sess.run(tf.global_variables_initializer())
for i in range(20000):
batch = data.train.next_batch(50)
if i % 50 == 0:
train_accuracy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
print("step %d, trainging accuracy %g" % (i, train_accuracy))
sess.run(train_step, feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
print(sess.run(accuracy, feed_dict={x: data.test.images, y_: data.test.labels, keep_prob: 1.0}))
path = saver.save(
sess, os.path.join(os.path.dirname(__file__), 'data', 'convolutional.ckpt'),
write_meta_graph=False, write_state=False)
print("Saved:", path)
input_data.py
from __future__ import absolute_import, division, print_function
import gzip
import os
import tempfile
import numpy
from six.moves import urllib, xrange
import tensorflow as tf
from tensorflow.contrib.learn.python.learn.datasets.mnist import read_data_sets
model.py
import tensorflow as tf
# Y = W * x + b
def regression(x):
W = tf.Variable(tf.zeros([784, 10]), name="W")
b = tf.Variable(tf.zeros([10]), name="b")
y = tf.nn.softmax(tf.matmul(x, W) + b)
return y, [W, b]
def convolutional(x, keep_prob):
def conv2d(x, W):
return tf.nn.conv2d(x,W,[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
x_image = tf.reshape(x, [-1, 28, 28, 1])
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
# full connection
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
return y, [W_conv1, b_conv1, W_conv2, b_conv2, W_fc1, b_fc1, W_fc2, b_fc2]
regression.py
import os
import input_data
import model
import tensorflow as tf
data = input_data.read_data_sets('MNIST_data', one_hot=True)
# create model
with tf.variable_scope("regression"):
x = tf.placeholder(tf.float32, [None, 784])
y, variables = model.regression(x)
# train
y_ = tf.placeholder("float", [None, 10])
cross_entropy = -tf.reduce_sum(y_ * tf.log(y))
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# save
saver = tf.train.Saver(variables)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for _ in range(1000):
batch_xs, batch_ys = data.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
print((sess.run(accuracy, feed_dict={x: data.test.images, y_: data.test.labels})))
path = saver.save(
sess, os.path.join(os.path.dirname(__file__), 'data', 'regression.ckpt'),
write_meta_graph=False, write_state=False)
print("Saved:", path)
main.js
/* global $ */
class Main {
constructor() {
this.canvas = document.getElementById('main');
this.input = document.getElementById('input');
this.canvas.width = 449; // 16 * 28 + 1
this.canvas.height = 449; // 16 * 28 + 1
this.ctx = this.canvas.getContext('2d');
this.canvas.addEventListener('mousedown', this.onMouseDown.bind(this));
this.canvas.addEventListener('mouseup', this.onMouseUp.bind(this));
this.canvas.addEventListener('mousemove', this.onMouseMove.bind(this));
this.initialize();
}
initialize() {
this.ctx.fillStyle = '#FFFFFF';
this.ctx.fillRect(0, 0, 449, 449);
this.ctx.lineWidth = 1;
this.ctx.strokeRect(0, 0, 449, 449);
this.ctx.lineWidth = 0.05;
for (var i = 0; i < 27; i++) {
this.ctx.beginPath();
this.ctx.moveTo((i + 1) * 16, 0);
this.ctx.lineTo((i + 1) * 16, 449);
this.ctx.closePath();
this.ctx.stroke();
this.ctx.beginPath();
this.ctx.moveTo( 0, (i + 1) * 16);
this.ctx.lineTo(449, (i + 1) * 16);
this.ctx.closePath();
this.ctx.stroke();
}
this.drawInput();
$('#output td').text('').removeClass('success');
}
onMouseDown(e) {
this.canvas.style.cursor = 'default';
this.drawing = true;
this.prev = this.getPosition(e.clientX, e.clientY);
}
onMouseUp() {
this.drawing = false;
this.drawInput();
}
onMouseMove(e) {
if (this.drawing) {
var curr = this.getPosition(e.clientX, e.clientY);
this.ctx.lineWidth = 16;
this.ctx.lineCap = 'round';
this.ctx.beginPath();
this.ctx.moveTo(this.prev.x, this.prev.y);
this.ctx.lineTo(curr.x, curr.y);
this.ctx.stroke();
this.ctx.closePath();
this.prev = curr;
}
}
getPosition(clientX, clientY) {
var rect = this.canvas.getBoundingClientRect();
return {
x: clientX - rect.left,
y: clientY - rect.top
};
}
drawInput() {
var ctx = this.input.getContext('2d');
var img = new Image();
img.onload = () => {
var inputs = [];
var small = document.createElement('canvas').getContext('2d');
small.drawImage(img, 0, 0, img.width, img.height, 0, 0, 28, 28);
var data = small.getImageData(0, 0, 28, 28).data;
for (var i = 0; i < 28; i++) {
for (var j = 0; j < 28; j++) {
var n = 4 * (i * 28 + j);
inputs[i * 28 + j] = (data[n + 0] + data[n + 1] + data[n + 2]) / 3;
ctx.fillStyle = 'rgb(' + [data[n + 0], data[n + 1], data[n + 2]].join(',') + ')';
ctx.fillRect(j * 5, i * 5, 5, 5);
}
}
if (Math.min(...inputs) === 255) {
return;
}
$.ajax({
url: '/api/mnist',
method: 'POST',
contentType: 'application/json',
data: JSON.stringify(inputs),
success: (data) => {
for (let i = 0; i < 2; i++) {
var max = 0;
var max_index = 0;
for (let j = 0; j < 10; j++) {
var value = Math.round(data.results[i][j] * 1000);
if (value > max) {
max = value;
max_index = j;
}
var digits = String(value).length;
for (var k = 0; k < 3 - digits; k++) {
value = '0' + value;
}
var text = '0.' + value;
if (value > 999) {
text = '1.000';
}
$('#output tr').eq(j + 1).find('td').eq(i).text(text);
}
for (let j = 0; j < 10; j++) {
if (j === max_index) {
$('#output tr').eq(j + 1).find('td').eq(i).addClass('success');
} else {
$('#output tr').eq(j + 1).find('td').eq(i).removeClass('success');
}
}
}
}
});
};
img.src = this.canvas.toDataURL();
}
}
$(() => {
var main = new Main();
$('#clear').click(() => {
main.initialize();
});
});
main.js
document.write("");
class Main {
constructor() {
this.canvas = document.getElementById('main');
this.input = document.getElementById('input');
this.canvas.width = 449; // 16 * 28 + 1
this.canvas.height = 449; // 16 * 28 + 1
this.ctx = this.canvas.getContext('2d');
this.canvas.addEventListener('mousedown', this.onMouseDown.bind(this));
this.canvas.addEventListener('mouseup', this.onMouseUp.bind(this));
this.canvas.addEventListener('mousemove', this.onMouseMove.bind(this));
this.initialize();
}
initialize() {
this.ctx.fillStyle = '#FFFFFF';
this.ctx.fillRect(0, 0, 449, 449);
this.ctx.lineWidth = 1;
this.ctx.strokeRect(0, 0, 449, 449);
this.ctx.lineWidth = 0.05;
for (var i = 0; i < 27; i++) {
this.ctx.beginPath();
this.ctx.moveTo((i + 1) * 16, 0);
this.ctx.lineTo((i + 1) * 16, 449);
this.ctx.closePath();
this.ctx.stroke();
this.ctx.beginPath();
this.ctx.moveTo(0, (i + 1) * 16);
this.ctx.lineTo(449, (i + 1) * 16);
this.ctx.closePath();
this.ctx.stroke();
}
this.drawInput();
$('#output td').text('').removeClass('success');
}
onMouseDown(e) {
this.canvas.style.cursor = 'default';
this.drawing = true;
this.prev = this.getPosition(e.clientX, e.clientY);
}
onMouseUp() {
this.drawing = false;
this.drawInput();
}
onMouseMove(e) {
if (this.drawing) {
var curr = this.getPosition(e.clientX, e.clientY);
this.ctx.lineWidth = 16;
this.ctx.lineCap = 'round';
this.ctx.beginPath();
this.ctx.moveTo(this.prev.x, this.prev.y);
this.ctx.lineTo(curr.x, curr.y);
this.ctx.stroke();
this.ctx.closePath();
this.prev = curr;
}
}
getPosition(clientX, clientY) {
var rect = this.canvas.getBoundingClientRect();
return {
x: clientX - rect.left,
y: clientY - rect.top
};
}
drawInput() {
var ctx = this.input.getContext('2d');
var img = new Image();
img.onload = () => {
var inputs = [];
var small = document.createElement('canvas').getContext('2d');
small.drawImage(img, 0, 0, img.width, img.height, 0, 0, 28, 28);
var data = small.getImageData(0, 0, 28, 28).data;
for (var i = 0; i < 28; i++) {
for (var j = 0; j < 28; j++) {
var n = 4 * (i * 28 + j);
inputs[i * 28 + j] = (data[n + 0] + data[n + 1] + data[n + 2]) / 3;
ctx.fillStyle = 'rgb(' + [data[n + 0], data[n + 1], data[n + 2]].join(',') + ')';
ctx.fillRect(j * 5, i * 5, 5, 5);
}
}
if (Math.min(...inputs) === 255) {
return;
}
$.ajax({
url: '/api/mnist',
method: 'POST',
contentType: 'application/json',
data: JSON.stringify(inputs),
success: (data) => {
data = JSON.parse(data);
var value_1=new Array();
var value_2 = new Array();
for(var i=0;i<(data["site"][0]["output1"]).length;i++)
{
value_1[i] = Math.round(data["site"][0]["output1"][i] * 100);
}
for(var i=0;i<(data["site"][0]["output2"]).length;i++)
{
value_2[i] = Math.round(data["site"][0]["output2"][i] * 100);
}
// 获取最大值
var max_1 = Math.max.apply(Math,value_1);
var max_2 = Math.max.apply(Math,value_2);
var max_index_1 = value_1.indexOf(max_1);
var max_index_2 = value_2.indexOf(max_2);
for (let j=0;j<10;j++)
{
$('#result tr').eq(j + 1).find('td').eq(1).text(value_1[j]+"%");
if(j===max_index_1){
$('#result tr').eq(max_index_1+1).find('td').eq(1).addClass('success');
}
}
for (let j=0;j<10;j++)
{
$('#result tr').eq(j + 1).find('td').eq(2).text(value_2[j]+"%");
if(j===max_index_1){
$('#result tr').eq(max_index_2+1).find('td').eq(2).addClass('success');
}
}
// $("#regression").text(data.result);
// // 基于准备好的dom,初始化echarts实例
// var myChart = echarts.init($('#regression'));
// console.log(myChart);
// console.log('hhh');
// // 指定图表的配置项和数据
// var option = {
// title: {
// text: 'ECharts 入门示例'
// },
// tooltip: {},
// legend: {
// data: ['销量']
// },
// xAxis: {
// data: ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
// },
// yAxis: {},
// series: [{
// name: '销量',
// type: 'bar',
// data: [5, 20, 36, 10, 10, 20]
// }]
// };
//
// // 使用刚指定的配置项和数据显示图表。
// myChart.setOption(option);
// for (let i = 0; i < 2; i++) {
// var max = 0;
// var max_index = 0;
// for (let j = 0; j < 10; j++) {
// var value = Math.round(data.results[i][j] * 1000);
// console.log(value);
// if (value > max) {
// max = value;
// max_index = j;
// }
// var digits = String(value).length;
// for (var k = 0; k < 3 - digits; k++) {
// value = '0' + value;
// }
// var text = '0.' + value;
// if (value > 999) {
// text = '1.000';
// }
// $('#output tr').eq(j + 1).find('td').eq(i).text(text);
// }
// for (let j = 0; j < 10; j++) {
// if (j === max_index) {
// $('#output tr').eq(j + 1).find('td').eq(i).addClass('success');
// } else {
// $('#output tr').eq(j + 1).find('td').eq(i).removeClass('success');
// }
// }
// }
}
});
};
img.src = this.canvas.toDataURL();
}
}
$(() => {
var main = new Main();
$('#clear').click(() => {
main.initialize();
console.log("hahh");
for(let i=0;i<2;i++)
{
for(j=0;j<10;j++)
{
$('#result tr').eq(j + 1).find('td').eq(i+1).text(" ");
$('#result tr').eq(j + 1).find('td').eq(i+1).removeClass('success');
}
}
});
});
index.html
<!DOCTYPE html>
<html>
<head>
<title>MNIST</title>
<!-- 最新版本的 Bootstrap 核心 CSS 文件 -->
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css"
integrity="sha384-BVYiiSIFeK1dGmJRAkycuHAHRg32OmUcww7on3RYdg4Va+PmSTsz/K68vbdEjh4u" crossorigin="anonymous">
<!-- 可选的 Bootstrap 主题文件(一般不用引入) -->
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap-theme.min.css"
integrity="sha384-rHyoN1iRsVXV4nD0JutlnGaslCJuC7uwjduW9SVrLvRYooPp2bWYgmgJQIXwl/Sp" crossorigin="anonymous">
<script type="text/javascript" src="{{ url_for('static', filename='js/jquery.min.js') }}"></script>
<!-- 最新的 Bootstrap 核心 JavaScript 文件 -->
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/js/bootstrap.min.js"
integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa"
crossorigin="anonymous"></script>
<script src="http://echarts.baidu.com/build/dist/echarts.js"></script>
<script type="text/javascript" src="{{ url_for('static', filename='js/main.js') }}"></script>
</head>
<body>
<!--<a href="https://github.com/sugyan/tensorflow-mnist"><img style="position: absolute; top: 0; right: 0; border: 0;" src="https://camo.githubusercontent.com/a6677b08c955af8400f44c6298f40e7d19cc5b2d/68747470733a2f2f73332e616d617a6f6e6177732e636f6d2f6769746875622f726962626f6e732f666f726b6d655f72696768745f677261795f3664366436642e706e67" alt="Fork me on GitHub" data-canonical-src="https://s3.amazonaws.com/github/ribbons/forkme_right_gray_6d6d6d.png"></a>-->
<div class="container">
<h1>MNIST</h1>
<div class="row">
<div class="col-md-6">
<p>draw a digit here!</p>
<canvas id="main"></canvas>
<p>
<button id="clear" class="btn btn-default">clear</button>
</p>
</div>
<div class="col-md-6">
<p>input:</p>
<canvas id="input" style="border:1px solid" width="140" height="140"></canvas>
<hr>
<p>output:</p>
<!-- 为 ECharts 准备一个具备大小(宽高)的 DOM -->
<div id="regression" style="width: 600px;height:300px;">
<table id="result" class="table table-condensed table-hover text-center" border="1">
<!-- On rows -->
<tr>
<td></td>
<td>regression</td>
<td>convolutional</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
</table>
</div>
</div>
</div>
</div>
</body>
</html>
main.py
import numpy as np
import tensorflow as tf
from flask import Flask,jsonify,render_template,request
import json
from mnist import model
x = tf.placeholder("float", [None, 784])
sess = tf.Session()
with tf.variable_scope("regression"):
y1, variables = model.regression(x)
saver = tf.train.Saver(variables)
saver.restore(sess, "mnist/data/regression.ckpt")
with tf.variable_scope("convolutional"):
keep_prob = tf.placeholder("float")
y2, variables = model.convolutional(x, keep_prob)
saver = tf.train.Saver(variables)
saver.restore(sess, "mnist/data/convolutional.ckpt")
def regression(input):
return sess.run(y1, feed_dict={x: input}).flatten().tolist()
def convolutional(input):
return sess.run(y2, feed_dict={x: input, keep_prob: 1.0}).flatten().tolist()
app = Flask(__name__)
@app.route('/api/mnist', methods=['post'])
def mnist():
input = ((255 - np.array(request.json, dtype=np.uint8)) / 255.0).reshape(1, 784)
output1 = regression(input)
output2 = convolutional(input)
output = {}
output["output1"] = output1
output["output2"] = output2
res = []
res.append(output)
a = {}
a['site'] = res
mydata = json.dumps(a, ensure_ascii=False).encode("utf8")
return mydata
@app.route('/')
def main():
return render_template('index.html')
if __name__ == '__main__':
app.debug = True
app.run(host='localhost', port=8000)