人工智能在几年中快速发展,尖端技术慢慢向普及应用到各行各业

  随着深度学习的开放,人工智能在几年中快速发展,尖端技术慢慢向普及应用到各行各业。以下是国外一家专注于开源和堆栈技术新闻网站 TheNewStark 盘点的2022 年值得人们期待的五个人工智能发展趋势。
  趋势 1:大型语言模型(LLMs),定义交互式人工智能的下一个浪潮
  人工智能的语言模型是基于自然语言处理技术和算法创建的。比如在某一句话说一半的时候,这个模型会根据以往记录的实例,来推断出这句话后面的几个字。总的来说就是总结文本信息,甚至从纯文本中创建视觉图表。
  大型语言模型(LLMs)是在包含巨大数据量的大规模数据集上训练的。像是 Google 的 BERT 和 OpenAI 的 GPT-2 和 GPT-3 就是LLMs 很好的例子。据了解,GPT-3 中约有 1750 亿个参数,在 570 千兆字节的文本上进行训练。这些模型生成的东西可以从简单的文章到复杂的金融模型。现如今,包括 OpenAI、Hugging Face、Cohere、AI21 Labs 以及 AI12 在内的人工智能初创公司,正在通过训练具有数十亿参数的模型来推动 LLMs 的发展。
  韩国一家叫做 Naver 的公司宣布,它已经建立了最全面的基于人工智能的语言模型之—— HyperCLOVA,一个类似于 GPT-3 的韩语模型。与上述模型不同的是,华为的 PanGu-Alpha 以及百度的 Ernie 3.0 Titan 则是在由电子书、百科全书和社交媒体组成的海量中文数据集上进行训练的。
  在 2022 年,我们将看到大型语言模型成为下一代交互式人工智能工具的基础模型。
  趋势 2:多模态人工智能的崛起
  " 模态 "(Modality)是德国理学家赫尔姆霍茨提出的一种生物学概念,即生物凭借感知器官与经验来接收信息的通道,如人类有视觉、听觉、触觉、味觉和嗅觉模态。多模态是指将多种感官进行融合,而多模态交互是指人通过声音、肢体语言、信息载体(文字、图片、音频、视频)、环境等多个通道与计算机进行交流,充分模拟人与人之间的交互方式。
  传统的深度学习算法专注于从一个单一的数据源训练其模型。例如,计算机视觉模型是在一组图像上训练的,NLP 模型是在文本内容上训练的,语音处理则涉及声学模型的创建、唤醒词检测和噪音消除。这种类型的机器学习与单模态人工智能有关,其结果都被映射到一个单一的数据类型来源。而多模态人工智能是计算机视觉和交互式人工智能智能模型的最终融合,为计算器提供更接近于人类感知的场景。
  多模态人工智能的最新例子是 OpenAI 的 DALL-E,该模型使用艺术家萨尔瓦多 - 达利和皮克斯的瓦力的谐音来命名。它可以从文本描述中生成对应图像。例如,当文本描述为 " 一个甜甜圈形状的时钟 " 被发送到该模型时,它就可以生成以下图像。

你可能感兴趣的:(人工智能,机器学习,自然语言处理)