tensorflow 入门小例子(mnist手写数字识别)

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

# 定义算法公式,即神经网络的前向计算
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
sess=tf.InteractiveSession()
x=tf.placeholder(tf.float32,shape=[None,784])
w=tf.Variable(tf.random_uniform([784,10],-1,1))
b=tf.Variable(tf.zeros([10]))
y=tf.nn.softmax(tf.matmul(x,w)+b)

# 定义损失函数且选定优化算法,并将指定优化器优化loss
y_=tf.placeholder(tf.float32,shape=[None,10])
cross_entrypy=tf.reduce_mean(-tf.reduce_sum(y_*tf.log(y),reduction_indices=[1]))
train_step=tf.train.GradientDescentOptimizer(0.5).minimize(cross_entrypy)
tf.global_variables_initializer().run()

# 迭代的对数据进行训练
for i in range(1000):
batch_xs,batch_ys=mnist.train.next_batch(100)
sess.run(train_step,{x:batch_xs,y_:batch_ys})

# 在测试集上进行评估
correct_prediction=tf.equal(tf.argmax(y,1),tf.argmax(y_,1))
accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
print sess.run(accuracy,feed_dict={x:mnist.test.images,y_:mnist.test.labels})

以上是tensor flow入门的例子,其正确率只有百分之就是一点几。

你可能感兴趣的:(tensorflow,深度学习,深度学习,tensorflow)