数据增强实测之cutout

cutout是2017年提出的一种数据增强方法,想法比较简单,即在训练时随机裁剪掉图像的一部分,也可以看作是一种类似dropout的正则化方法。

Improved Regularization of Convolutional Neural Networks with Cutout

paper: https://arxiv.org/pdf/1708.04552.pdf

code: https://github.com/uoguelph-mlrg/Cutout


cutout采用的操作是随机裁剪掉图像中的一块正方形区域,并在原图中补0。由于作者在cutout早期版本中使用了不规则大小区域的方式,但是对比发现,固定大小区域能达到同等的效果,因此就没必要这么麻烦去生成不规则区域了。

实现代码比较简单,cutout.py,如下:

import torch
import numpy as np


class Cutout(object):
    """Randomly mask out one or more patches from an image.

    Args:
        n_holes (int): Number of patches to cut out of each image.
        length (int): The length (in pixels) of each square patch.
    """
    def __init__(self, n_holes=1, length=16):
        self.n_holes = n_holes
        self.length = length

    def __call__(self, img):
        """
        Args:
            img (Tensor): Tensor image of size (C, H, W).
        Returns:
            Tensor: Image with n_holes of dimension length x length cut out of it.
        """
        h = img.size(1)
        w = img.size(2)

        mask = np.ones((h, w), np.float32)

        for n in range(self.n_holes):
            y = np.random.randint(h)
            x = np.random.randint(w)

            y1 = np.clip(y - self.length // 2, 0, h)
            y2 = np.clip(y + self.length // 2, 0, h)
            x1 = np.clip(x - self.length // 2, 0, w)
            x2 = np.clip(x + self.length // 2, 0, w)

            mask[y1: y2, x1: x2] = 0.

        mask = torch.from_numpy(mask)
        mask = mask.expand_as(img)
        img = img * mask

        return img

上面代码中有两个参数,具体如下:

n_holes:表示裁剪掉的图像块的数目,默认都是设置为1;

length:每个正方形块的边长,作者经过多轮尝试后,不同数据集最优设置不同,CIFAR10为16,CIFAR100为8,SVHN为20;# 这里觉得挺麻烦的,cutout调参很重要

看看在图像上cutout是什么效果,代码如下:

import cv2
from torchvision import transforms
from cutout import Cutout

# 执行cutout
img = cv2.imread('cat.png')
img = transforms.ToTensor()(img)
cut = Cutout(length=100)
img = cut(img)

# cutout图像写入本地
img = img.mul(255).byte()
img = img.numpy().transpose((1, 2, 0))
cv2.imwrite('cutout.png', img)

由于原图比较大,这里把正方形边长调到了100,效果如下:


实际训练看看效果到底怎么样,为了保证公平,训练时参数统一,且每种模型训练了8次以减少随机性,结果见下表。

Method CIFAR-10 CIFAR-100
ResNet-50 96.76/96.82/96.81/96.79
96.72/96.69/96.60/96.82
(96.75)
83.80/83.66/84.19/83.26
83.89/83.90/83.57/83.69
(83.74)
ResNet-50+cutout 96.73/96.58/96.78/96.65
96.65/96.58/96.77/96.65
(96.67)
83.63/83.78/83.80/83.49
83.92/83.57/83.71/83.60
(83.69)

从实验结果来看,在CIFAR10和CIFAR100这两个数据集上使用cutout,训练出来的模型精度都会掉一点。看来cutout涨点并没有那么容易,和调参、模型深度、数据集都有很大的关系。


数据增强实测之Random Erasing_一个菜鸟的奋斗-CSDN博客

数据增强实测之mixup_一个菜鸟的奋斗-CSDN博客

数据增强实测之RICAP_一个菜鸟的奋斗-CSDN博客

数据增强实测之GridMask_一个菜鸟的奋斗-CSDN博客

数据增强实测之Hide-and-Seek_一个菜鸟的奋斗-CSDN博客

你可能感兴趣的:(数据增强,图像分类,深度学习,cutout,数据增强,图像分类,深度学习)