零基础入门数据挖掘

Datawhale 零基础入门数据挖掘-Task1 赛题理解

Task1 赛题理解

Tip:本次新人赛是Datawhale与天池联合发起的零基础入门系列赛事第五场 —— 零基础入门心电图心跳信号多分类预测挑战赛。

2016年6月,国务院办公厅印发《国务院办公厅关于促进和规范健康医疗大数据应用发展的指导意见》,文件指出健康医疗大数据应用发展将带来健康医疗模式的深刻变化,有利于提升健康医疗服务效率和质量。

赛题以心电图数据为背景,要求选手根据心电图感应数据预测心跳信号,其中心跳信号对应正常病例以及受不同心律不齐和心肌梗塞影响的病例,这是一个多分类的问题。通过这道赛题来引导大家了解医疗大数据的应用,帮助竞赛新人进行自我练习、自我提高。

比赛地址: 零基础入门心电图心跳信号多分类预测

1.数据概况

一般而言,对于数据在比赛界面都有对应的数据概况介绍(匿名特征除外),说明列的性质特征。了解列的性质会有助于我们对于数据的理解和后续分析。

Tip:匿名特征,就是未告知数据列所属的性质的特征列。
零基础入门数据挖掘_第1张图片
train.csv

  • id 为心跳信号分配的唯一标识
  • heartbeat_signals 心跳信号序列(数据之间采用“,”进行分隔)
  • label 心跳信号类别(0、1、2、3)

testA.csv

  • id 心跳信号分配的唯一标识
  • heartbeat_signals 心跳信号序列(数据之间采用“,”进行分隔)

2.预测指标

选手需提交4种不同心跳信号预测的概率,选手提交结果与实际心跳类型结果进行对比,求预测的概率与真实值差值的绝对值。

具体计算公式如下:

总共有n个病例,针对某一个信号,若真实值为[y1,y2,y3,y4],模型预测概率值为[a1,a2,a3,a4],那么该模型的评价指标abs-sum为`
a b s − s u m = ∑ j = 1 n ∑ i = 1 4 ∣ y i − a i ∣ {abs-sum={\mathop{ \sum }\limits_{{j=1}}^{{n}}{{\mathop{ \sum }\limits_{{i=1}}^{{4}}{{ \left| {y\mathop{{}}\nolimits_{{i}}-a\mathop{{}}\nolimits_{{i}}} \right| }}}}}} abssum=j=1ni=14yiai
例如,某心跳信号类别为1,通过编码转成[0,1,0,0],预测不同心跳信号概率为[0.1,0.7,0.1,0.1],那么这个信号预测结果的abs-sum为
a b s − s u m = ∣ 0.1 − 0 ∣ + ∣ 0.7 − 1 ∣ + ∣ 0.1 − 0 ∣ + ∣ 0.1 − 0 ∣ = 0.6 {abs-sum={ \left| {0.1-0} \right| }+{ \left| {0.7-1} \right| }+{ \left| {0.1-0} \right| }+{ \left| {0.1-0} \right| }=0.6} abssum=0.10+0.71+0.10+0.10=0.6

之前没有认真考虑过样本是否均衡对结果的影响,以及评估指标的具体意义,通过下面的链接才真正理解:关于评估标准的理解(样本不平衡,准确率,召回率,ROC曲线等)

数据不平横:假设有10个人 8个好人和2个坏人。如果存在一个机器学习模型,遇到人就说好人,那么模型的预测结果将会好人, 好人, ......。利用准确率的计算方式 ACC = 8个好人预测正确/总共有10个人 = 0.8 得这个机器模型的预测为80%。

有没有感觉很奇怪,我猜硬币才只有50%正确率,怎么这个模型只说好人,准确率这么高的?而且,这个模型是不是不能够识别坏人?

因此准确率不适合数据不平横的情况

评估指标:

准确率 = 所有预测对的 / 所有样本 = (真阳性 + 真阴性)/ (真阳+真阴+假阳+假阴) 
敏感度(召回率) = 好人被预测对的 / 所有真实是好人 = 真阳 / (真阳 + 假阴)
特异度 = 坏人被预测对的 / 所有真实是坏人 = 真阴 / (真阴 + 假阳) 
准确率 = TP / TP + NP 
F分数 = 准确率和召回率的调和平均数
ROC曲线 同时关注特异度和敏感度,使得两者和最大

首先,召回率和精准率是基于好人的标准上的。F分数也只是关注辨识好人的能力。

其次,分析好人标准于同时影响敏感度与特异度。已经知道好人标准会影响敏感度(召回率),同时,好人标准也会影响特异度,因为好人的标准越高,就越多坏人可以被认出来,特异度就变高(真阴变多,假阳减少),但是召回率就变低,因为有些不是特别好的好人可能也被当为坏人了。相反,好人标准变低,坏人容易被认为好人(真阴减少,假阳变多),特异度就变低,同时召回率就升高了(真阳变多,假阴变少)。

最后分析ROC曲线的实际意义。这个好人标准,就是机器学习中所说的阈值,调节阈值
零基础入门数据挖掘_第2张图片

3.baseline

3.1导入第三方包
import os
import gc
import math

import pandas as pd
import numpy as np

import lightgbm as lgb
import xgboost as xgb
from catboost import CatBoostRegressor
from sklearn.linear_model import SGDRegressor, LinearRegression, Ridge
from sklearn.preprocessing import MinMaxScaler


from sklearn.model_selection import StratifiedKFold, KFold
from sklearn.metrics import log_loss
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OneHotEncoder

from tqdm import tqdm
import matplotlib.pyplot as plt
import time
import warnings
warnings.filterwarnings('ignore')
3.2读取数据
train = pd.read_csv('train.csv')
test=pd.read_csv('testA.csv')
train.head()
3.3数据预处理(包含优化内存)
def reduce_mem_usage(df):
    start_mem = df.memory_usage().sum() / 1024**2 
    print('Memory usage of dataframe is {:.2f} MB'.format(start_mem))
    
    for col in df.columns:
        col_type = df[col].dtype
        
        if col_type != object:
            c_min = df[col].min()
            c_max = df[col].max()
            if str(col_type)[:3] == 'int':
                if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:
                    df[col] = df[col].astype(np.int8)
                elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:
                    df[col] = df[col].astype(np.int16)
                elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:
                    df[col] = df[col].astype(np.int32)
                elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:
                    df[col] = df[col].astype(np.int64)  
            else:
                if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max:
                    df[col] = df[col].astype(np.float16)
                elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max:
                    df[col] = df[col].astype(np.float32)
                else:
                    df[col] = df[col].astype(np.float64)
        else:
            df[col] = df[col].astype('category')

    end_mem = df.memory_usage().sum() / 1024**2 
    print('Memory usage after optimization is: {:.2f} MB'.format(end_mem))
    print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem))
    
    return df
# 简单预处理
train_list = []

for items in train.values:
    train_list.append([items[0]] + [float(i) for i in items[1].split(',')] + [items[2]])

train = pd.DataFrame(np.array(train_list))
train.columns = ['id'] + ['s_'+str(i) for i in range(len(train_list[0])-2)] + ['label']
train = reduce_mem_usage(train)

test_list=[]
for items in test.values:
    test_list.append([items[0]] + [float(i) for i in items[1].split(',')])

test = pd.DataFrame(np.array(test_list))
test.columns = ['id'] + ['s_'+str(i) for i in range(len(test_list[0])-1)]
test = reduce_mem_usage(test)
3.4训练数据/测试数据准备
x_train = train.drop(['id','label'], axis=1)
y_train = train['label']
x_test=test.drop(['id'], axis=1)
3.5模型训练
def abs_sum(y_pre,y_tru):
    y_pre=np.array(y_pre)
    y_tru=np.array(y_tru)
    loss=sum(sum(abs(y_pre-y_tru)))
    return loss
def cv_model(clf, train_x, train_y, test_x, clf_name):
    folds = 5
    seed = 2021
    kf = KFold(n_splits=folds, shuffle=True, random_state=seed)
    test = np.zeros((test_x.shape[0],4))

    cv_scores = []
    onehot_encoder = OneHotEncoder(sparse=False)
    for i, (train_index, valid_index) in enumerate(kf.split(train_x, train_y)):
        print('************************************ {} ************************************'.format(str(i+1)))
        trn_x, trn_y, val_x, val_y = train_x.iloc[train_index], train_y[train_index], train_x.iloc[valid_index], train_y[valid_index]
        
        if clf_name == "lgb":
            train_matrix = clf.Dataset(trn_x, label=trn_y)
            valid_matrix = clf.Dataset(val_x, label=val_y)

            params = {
                'boosting_type': 'gbdt',
                'objective': 'multiclass',
                'num_class': 4,
                'num_leaves': 2 ** 5,
                'feature_fraction': 0.8,
                'bagging_fraction': 0.8,
                'bagging_freq': 4,
                'learning_rate': 0.1,
                'seed': seed,
                'nthread': 28,
                'n_jobs':24,
                'verbose': -1,
            }

            model = clf.train(params, 
                      train_set=train_matrix, 
                      valid_sets=valid_matrix, 
                      num_boost_round=2000, 
                      verbose_eval=100, 
                      early_stopping_rounds=200)
            val_pred = model.predict(val_x, num_iteration=model.best_iteration)
            test_pred = model.predict(test_x, num_iteration=model.best_iteration) 
            
        val_y=np.array(val_y).reshape(-1, 1)
        val_y = onehot_encoder.fit_transform(val_y)
        print('预测的概率矩阵为:')
        print(test_pred)
        test += test_pred
        score=abs_sum(val_y, val_pred)
        cv_scores.append(score)
        print(cv_scores)
    print("%s_scotrainre_list:" % clf_name, cv_scores)
    print("%s_score_mean:" % clf_name, np.mean(cv_scores))
    print("%s_score_std:" % clf_name, np.std(cv_scores))
    test=test/kf.n_splits

    return test
def lgb_model(x_train, y_train, x_test):
    lgb_test = cv_model(lgb, x_train, y_train, x_test, "lgb")
    return lgb_train, lgb_test
lgb_test = lgb_model(x_train, y_train, x_test)
3.6结果存储
temp=pd.DataFrame(lgb_test)
result=pd.read_csv('sample_submit.csv')
result['label_0']=temp[0]
result['label_1']=temp[1]
result['label_2']=temp[2]
result['label_3']=temp[3]
result.to_csv('submit.csv',index=False)

你可能感兴趣的:(python,机器学习)