HDU 4998 (点的旋转) Rotate

为了寻找等效旋转操作,我们任选两个点P0和Q0,分别绕这n个点旋转一定的角度后最终得到Pn和Qn

然后已知:P0和Pn共圆,Q0和Qn共圆。所以要找的等效旋转点就是这两个线段的垂直平分线交点O。

等效的角度的计算,可以利用已知的等腰三角形(这里有两个)△P0PnR,做一条垂线(三线合一的性质),再利用反三角函数计算半角,再乘二

还有一种特殊情况就是,如果答案比平角要大,我们计算的角度就不对了。

此时可以让P0逆时针旋转90°得到一个P1,然后将P1和Pn的坐标分别代入直线P0R的方程,如果异号,说明P1和Pn在直线两侧;同号说明同侧。

也就是异侧的话,就要将所求角度用2π减去它。

 

 1 //#define LOCAL

 2 #include <iostream>

 3 #include <cstdio>

 4 #include <cstring>

 5 #include <cmath>

 6 using namespace std;

 7 

 8 void Rote(double& a1, double& b1, double a2, double b2, double p)

 9 {

10     double tempx = a1, tempy = b1;

11     tempx = cos(p)*(a1 - a2) + sin(p)*(b2 - b1) + a2;    

12     tempy = sin(p)*(a1 - a2) + cos(p)*(b1 - b2) + b2;

13     a1 = tempx;

14     b1 = tempy;

15 }

16 

17 double dis(double a1, double b1, double a2, double b2)

18 {

19     return sqrt((a1-a2)*(a1-a2) + (b1-b2)*(b1-b2));

20 }

21 

22 int main(void)

23 {

24     #ifdef LOCAL

25         freopen("Bin.txt", "r", stdin);

26     #endif

27 

28     int T;

29     scanf("%d", &T);

30     while(T--)

31     {

32         int n;

33         scanf("%d", &n);

34         double P0x = 0.123, P0y = 0.312, Q0x = 1.589, Q0y = 1.455;

35         double Pnx = P0x, Pny = P0y, Qnx = Q0x, Qny = Q0y;

36         for(int i = 0; i < n; ++i)

37         {

38             double P1x, P1y, alpha;

39             scanf("%lf%lf%lf", &P1x, &P1y, &alpha);

40             Rote(Pnx, Pny, P1x, P1y, alpha);

41             Rote(Qnx, Qny, P1x, P1y, alpha);

42         }

43         double A1 = P0x - Pnx, B1 = P0y - Pny, C1 = (P0x*P0x + P0y*P0y - Pnx*Pnx - Pny*Pny) / 2;

44         double A2 = Q0x - Qnx, B2 = Q0y - Qny, C2 = (Q0x*Q0x + Q0y*Q0y - Qnx*Qnx - Qny*Qny) / 2;

45         double ansx = (C1*B2 - C2*B1) / (A1*B2 - A2*B1);

46         double ansy = (C1*A2 - C2*A1) / (B1*A2 - B2*A1);

47 

48         double zx = (P0x + Pnx) / 2, zy = (P0y + Pny) / 2;

49         double ansa = acos(dis(zx,zy, ansx, ansy) / dis(P0x, P0y, ansx, ansy)) * 2;

50 

51         double P1x = ansx - (P0y - ansy), P1y = ansy + (P0x - ansx);

52         if(((P0y-ansy)*(P1x-ansx)-(P0x-ansx)*(P1y-ansy)) * ((P0y-ansy)*(Pnx-ansx)-(P0x-ansx)*(Pny-ansy)) < 0)

53             ansa = 3.1415926536 * 2 - ansa;

54 

55         printf("%.10lf %.10lf %.10lf\n", ansx, ansy, ansa);

56     }

57     return 0;

58 }
代码君

 

还有一种复数的方法,<complex>里面已经有了现成的复数数据类型和函数了,用起来很方便。

这是上交一队的代码,膜拜了

 1 #include <cstdlib>

 2 #include <cctype>

 3 #include <cstring>

 4 #include <cstdio>

 5 #include <cmath>

 6 #include <algorithm>

 7 #include <vector>

 8 #include <string>

 9 #include <iostream>

10 #include <sstream>

11 #include <map>

12 #include <set>

13 #include <queue>

14 #include <stack>

15 #include <fstream>

16 #include <numeric>

17 #include <iomanip>

18 #include <bitset>

19 #include <list>

20 #include <stdexcept>

21 #include <functional>

22 #include <utility>

23 #include <ctime>

24 #include <cassert>

25 #include <complex>

26 using namespace std;

27 #define rep(i,a,n) for (int i=a;i<n;i++)

28 #define per(i,a,n) for (int i=n-1;i>=a;i--)

29 #define pb push_back

30 #define mp make_pair

31 #define all(x) (x).begin(),(x).end()

32 #define fi first

33 #define se second

34 #define SZ(x) ((int)(x).size())

35 #define ACCU accumulate

36 #define TWO(x) (1<<(x))

37 #define TWOL(x) (1ll<<(x))

38 #define clr(a) memset(a,0,sizeof(a))

39 #define POSIN(x,y) (0<=(x)&&(x)<n&&0<=(y)&&(y)<m)

40 #define PRINTC(x) cout<<"Case #"<<++__<<": "<<x<<endl

41 #define POP(x) (__builtin_popcount(x))

42 #define POPL(x) (__builtin_popcountll(x))

43 typedef vector<int> VI;

44 typedef vector<string> VS;

45 typedef vector<double> VD;

46 typedef long long ll;

47 typedef long double LD;

48 typedef pair<int,int> PII;

49 typedef pair<ll,ll> PLL;

50 typedef vector<ll> VL;

51 typedef vector<PII> VPII;

52 typedef complex<double> CD;

53 const int inf=0x20202020;

54 const ll mod=1000000007;

55 const double eps=1e-9;

56 const double pi=3.1415926535897932384626;

57 const int DX[]={1,0,-1,0},DY[]={0,1,0,-1};

58 ll powmod(ll a,ll b) {ll res=1;a%=mod;for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}

59 ll powmod(ll a,ll b,ll mod) {ll res=1;a%=mod;for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}

60 ll gcd(ll a,ll b) { return b?gcd(b,a%b):a;}

61 // head

62 

63 int _,n;

64 CD k,b,p;

65 double x,y,c;

66 int main() {

67     for (scanf("%d",&_);_;_--) {

68         k=CD(1,0);b=CD(0,0);

69         scanf("%d",&n);

70         rep(i,0,n) {

71             scanf("%lf%lf%lf",&x,&y,&c);

72             p=CD(x,y);

73             k=k*CD(cos(c),sin(c));

74             b=(b-p)*CD(cos(c),sin(c))+p;

75         }

76         double the=arg(k);

77         while (the<0) the+=2*pi;

78         while (the>=2*pi) the-=2*pi;

79         p=b/(CD(1,0)-k);

80         printf("%.10f %.10f %.10f\n",real(p),imag(p),the);

81     }

82 }
外来的代码君

 

你可能感兴趣的:(HDU)