HDU 3467 (求五个圆相交面积) Song of the Siren

还没开始写题解我就已经内牛满面了,从晚饭搞到现在,WA得我都快哭了呢

题意:

在DotA中,你现在1V5,但是你的英雄有一个半径为r的眩晕技能,已知敌方五个英雄的坐标,问能否将该技能投放到一个合适的位置,使得对面所有敌人都被眩晕,这样你就有机会能够逃脱。

分析:

对于敌方一个英雄来说,如果技能的投放位置距离他不超过r则满足要求,那么如果要眩晕所有的敌人,可行区域就是以五人为中心的半径为r的圆的相交区域。

现在问题就转化为求五个半径相同的圆的相交部分的面积,如果只有一个点则输出该点。

在求交之前,我们可以先去除

我们将所交区域划分为一个凸多边形和周围若干个弓形。

弓形在两圆相交时便能求出,而且还能求出两圆的交点(注意两个交点p1,p2一定要按照逆时针的顺序,因为叉积有正负),也就是凸多边的顶点,其面积形直接用叉积来计算。

给两个传送门,认真学习一下吧:

http://www.cnblogs.com/oyking/archive/2013/11/14/3424517.html

对于枚举一个圆求与另外四个圆相交区域,是按照极角的区间求交集,详见:

http://hi.baidu.com/aekdycoin/item/7618bee9f473ed3e86d9ded6

五个圆是否交于一点还要另行判断

 

最后再感慨一下做计算几何说多了都是泪啊

  1 #include <cstdio>

  2 #include <cmath>

  3 #include <cstring>

  4 #include <algorithm>

  5 

  6 const int maxn = 10;

  7 const double eps = 1e-8;

  8 const double PI = acos(-1.0);

  9 

 10 int dcmp(double x)

 11 { return (x > eps) - (x < -eps); }

 12 

 13 struct Point

 14 {

 15     double x, y;

 16     Point(double x=0, double y=0):x(x), y(y) {}

 17     void read() { scanf("%lf%lf", &x, &y); }

 18 };

 19 typedef Point Vector;

 20 Point operator + (const Vector& a, const Vector& b)

 21 { return Point(a.x+b.x, a.y+b.y); }

 22 Point operator - (const Vector& a, const Vector& b)

 23 { return Point(a.x-b.x, a.y-b.y); }

 24 Vector operator * (const Vector& a, double p)

 25 { return Point(a.x*p, a.y*p); }

 26 Vector operator / (const Vector& a, double p)

 27 { return Point(a.x/p, a.y/p); }

 28 bool operator == (const Point& a, const Point& b)

 29 { return dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y) == 0; }

 30 

 31 double Dot(const Vector& a, const Vector& b)

 32 { return a.x*b.x + a.y*b.y; }

 33 double Cross(const Vector& a, const Vector& b)

 34 { return a.x*b.y - a.y*b.x; }

 35 double Length(const Vector& a)

 36 { return sqrt(Dot(a, a)); }

 37 Vector unit(const Vector& a)

 38 { return a / Length(a); }

 39 Vector Normal(const Vector& a)

 40 {

 41     double l = Length(a);

 42     return Vector(-a.y/l, a.x/l);

 43 }

 44 double Angle(const Vector& a)

 45 { return atan2(a.y, a.x); }

 46 

 47 Point Rotate(const Point& p, double angle, const Point& o = Point(0, 0))

 48 {

 49     Vector t = p - o;

 50     t = Vector(t.x*cos(angle)-t.y*sin(angle), t.x*sin(angle)+t.y*cos(angle));

 51     return t + o;

 52 }

 53 

 54 struct Region

 55 {

 56     double st, ed;

 57     Region(double s=0, double e=0):st(s), ed(e) {}

 58 };

 59 

 60 struct Circle

 61 {

 62     Point c;

 63     double r;

 64     Circle() {}

 65     Circle(Point c, double r):c(c), r(r) {}

 66     

 67     void read() { c.read(); scanf("%lf", &r); }

 68     

 69     double area() const { return PI * r * r; }

 70     

 71     bool contain(const Circle& rhs) const

 72     { return dcmp(Length(c-rhs.c) + rhs.r - r) <= 0; }

 73     

 74     bool contain(const Point& p) const

 75     { return dcmp(Length(c-p) - r) <= 0; }

 76     

 77     bool intersect(const Circle& rhs) const

 78     { return dcmp(Length(c-rhs.c) - r - rhs.r) < 0; }

 79     

 80     bool tangency(const Circle& rhs) const

 81     { return dcmp(Length(c-rhs.c) - r - rhs.r) == 0; }

 82     

 83     Point get_point(double ang) const

 84     { return Point(c.x + r * cos(ang), c.y + r * sin(ang)); }

 85 };

 86 

 87 void IntersectionPoint(const Circle& c1, const Circle& c2, Point& p1, Point& p2)

 88 {

 89     double d = Length(c1.c - c2.c);

 90     double l = (c1.r*c1.r + d*d - c2.r*c2.r) / (2 * d);

 91     double h = sqrt(c1.r*c1.r - l*l);

 92     Point mid = c1.c + unit(c2.c-c1.c) * l;

 93     Vector t = Normal(c2.c - c1.c) * h;

 94     p1 = mid + t;

 95     p2 = mid - t;

 96 }

 97 

 98 double IntersectionArea(const Circle& c1, const Circle& c2)

 99 {

100     double area = 0.0;

101     const Circle& M = c1.r > c2.r ? c1 : c2;

102     const Circle& N = c1.r > c2.r ? c2 : c1;

103     double d = Length(c1.c-c2.c);

104     

105     if(d < M.r + N.r && d > M.r - N.r)

106     {

107         double Alpha = 2.0 * acos((M.r*M.r + d*d - N.r*N.r) / (2 * M.r * d));

108         double Beta  = 2.0 * acos((N.r*N.r + d*d - M.r*M.r) / (2 * N.r * d));

109         area = ( M.r*M.r*(Alpha - sin(Alpha)) + N.r*N.r*(Beta - sin(Beta)) ) / 2.0;

110     }

111     else if(d <= M.r - N.r) area = N.area();

112     

113     return area;

114 }

115 

116 struct Region_vector

117 {

118     int n;

119     Region v[5];

120     void clear() { n = 0; }

121     void add(const Region& r) { v[n++] = r; }

122 } *last, *cur;

123 

124 Circle cir[maxn];

125 bool del[maxn];

126 double r;

127 int n = 5;

128 

129 bool IsOnlyOnePoint()

130 {

131     bool flag = false;

132     Point t;

133     for(int i = 0; i < n; ++i)

134     {

135         for(int j = i + 1; j < n; ++j)

136         {

137             if(cir[i].tangency(cir[j]))

138             {

139                 t = (cir[i].c + cir[j].c) / 2;

140                 flag = true;

141                 break;

142             }

143         }

144     }

145     

146     if(!flag) return false;

147     for(int i = 0; i < n; ++i)

148         if(!cir[i].contain(t)) return false;

149     

150     printf("Only the point (%.2f, %.2f) is for victory.\n", t.x, t.y);

151     return true;

152 }

153 

154 bool solve()

155 {

156     if(IsOnlyOnePoint()) return true;

157     memset(del, false, sizeof(del));

158     

159     for(int i = 0; i < n; ++i)

160         for(int j = 0; j < n; ++j)

161         {

162             if(del[j] || i == j) continue;

163             if(cir[i].contain(cir[j]))

164             {

165                 del[i] = true;

166                 break;

167             }

168         }

169         

170     double ans = 0.0;

171     for(int i = 0; i < n; ++i)

172     {

173         if(del[i]) continue;

174         last->clear();

175         Point p1, p2;

176         for(int j = 0; j < n; ++j)

177         {

178             if(del[j] || i == j) continue;

179             if(!cir[i].intersect(cir[j])) return false;

180             cur->clear();

181             IntersectionPoint(cir[i], cir[j], p1, p2);

182             double rs = Angle(p2 - cir[i].c);

183             double rt = Angle(p1 - cir[i].c);

184             if(dcmp(rs) < 0) rs += 2 * PI;

185             if(dcmp(rt) < 0) rt += 2 * PI;

186             if(last->n == 0)

187             {

188                 if(dcmp(rt - rs) < 0)

189                 {

190                     cur->add(Region(rs, 2*PI));

191                     cur->add(Region(0,  rt));

192                 }

193                 else cur->add(Region(rs, rt));

194             }

195             else

196             {

197                 for(int k = 0; k < last->n; ++k)

198                 {

199                     if(dcmp(rt - rs) < 0)

200                     {

201                         if(dcmp(last->v[k].st-rt) >= 0 && dcmp(last->v[k].ed-rs) <= 0) continue;

202                         if(dcmp(last->v[k].st-rt) < 0) cur->add(Region(last->v[k].st, std::min(last->v[k].ed, rt)));

203                         if(dcmp(last->v[k].ed-rs) > 0) cur->add(Region(std::max(last->v[k].st, rs), last->v[k].ed));

204                     }

205                     else

206                     {

207                         if(dcmp(rt-last->v[k].st <= 0 || dcmp(rs-last->v[k].ed) >= 0)) continue;

208                         cur->add(Region(std::max(rs, last->v[k].st), std::min(rt, last->v[k].ed)));

209                     }

210                 }

211             }

212             std::swap(cur, last);

213             if(last->n == 0) break;

214         }

215         for(int j = 0; j < last->n; ++j)

216         {

217             p1 = cir[i].get_point(last->v[j].st);

218             p2 = cir[i].get_point(last->v[j].ed);

219             ans += Cross(p1, p2) / 2;

220             double ang = last->v[j].ed - last->v[j].st;

221             ans += cir[i].r * cir[i].r * (ang - sin(ang)) / 2;

222         }

223     }

224     

225     if(dcmp(ans) == 0) return false;

226     printf("The total possible area is %.2f.\n", ans);

227     return true;

228 }

229 

230 int main(void)

231 {

232     //freopen("3467in.txt", "r", stdin);

233     last = new Region_vector;

234     cur =  new Region_vector;

235     while(scanf("%lf", &r) == 1)

236     {

237         Point t;

238         for(int i = 0; i < n; ++i)

239         {

240             t.read();

241             cir[i] = Circle(t, r);

242         }

243         if(!solve())

244             puts("Poor iSea, maybe 2012 is coming!");

245     }

246     

247     return 0;

248 }
代码君

 

你可能感兴趣的:(HDU)