Arrays.sort实现降序排序
在调用Arrays.sort()对数组进行排序时,默认是升序排序的,如果想让数组降序排序,有下面两种方法:
1.Collections的reverseOrder
import java.util.*; public class Main { public static void main(String[] args) { // 注意这里是Integer,不是int Integer[] arr={9,8,7,6,5,4,3,2,1}; Arrays.sort(arr,Collections.reverseOrder()); for(int i:arr){ System.out.println(i); } } }
2.利用Comparator接口复写compare
import java.util.*; public class Main { public static void main(String[] args) { Integer[] arr={9,8,7,6,5,4,3,2,1}; Comparator cmp=new CMP(); Arrays.sort(arr,cmp); for(int i:arr){ System.out.println(i); } } } class CMP implements Comparator{ @Override //可以去掉。作用是检查下面的方法名是不是父类中所有的 public int compare(Integer a,Integer b){ // 两种都可以,升序排序的话反过来就行 // return a-b<0?1:-1; return b-a; } }
注意:如果需要改变默认的排列方式,不能使用基本类型(int,char等)定义变量,而应该用对应的类
Arrays.sort底层原理
概述
Collections.sort()方法底层调用的也是Arrays.sort()方法,下面我们通过测试用例debug,探究一下其源码,首先说一下结果,使用到了插入排序,双轴快排,归并排序
双轴快排(DualPivotQuicksort): 顾名思义有两个轴元素pivot1,pivot2,且pivot ≤
pivot2,将序列分成三段:x < pivot1、pivot1 ≤ x ≤ pivot2、x >pivot2,然后分别对三段进行递归。这个算法通常会比传统的快排效率更高,也因此被作为Arrays.java中给基本类型的数据排序的具体实现。
大致流程:
快速排序部分展开
案例
public static void main(String[] args) { int[] nums = new int[]{6,5,4,3,2,1}; Listlist = Arrays.asList(6, 5, 4, 3, 2, 1); Arrays.sort(nums); Collections.sort(list); System.out.println(Arrays.toString(nums)); System.out.println(list); }
运行结果
1 进入Arrays.sort()方法
/** * Sorts the specified array into ascending numerical order. * *Implementation note: The sorting algorithm is a Dual-Pivot Quicksort * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm * offers O(n log(n)) performance on many data sets that cause other * quicksorts to degrade to quadratic performance, and is typically * faster than traditional (one-pivot) Quicksort implementations. * * @param a the array to be sorted */ public static void sort(int[] a) { DualPivotQuicksort.sort(a, 0, a.length - 1, null, 0, 0); }
方法上的注释
2 进入DualPivotQuicksort类内部的静态方法sort
方法上的注释
3 走sort的流程
1. 排序范围小于286的数组使用快速排序
// Use Quicksort on small arrays if (right - left < QUICKSORT_THRESHOLD) { sort(a, left, right, true); return; } // Merge sort ......
2. 进入sort方法,判断数组长度是否小于47,小于则直接采用插入排序,否则执行3。
// Use insertion sort on tiny arrays if (length < INSERTION_SORT_THRESHOLD) { // Insertion sort ...... }
3. 用公式length/8+length/64+1近似计算出数组长度的1/7。
// Inexpensive approximation of length / 7 int seventh = (length >> 3) + (length >> 6) + 1;
4. 取5个根据经验得出的等距点。
/* * Sort five evenly spaced elements around (and including) the * center element in the range. These elements will be used for * pivot selection as described below. The choice for spacing * these elements was empirically determined to work well on * a wide variety of inputs. */ int e3 = (left + right) >>> 1; // The midpoint int e2 = e3 - seventh; int e1 = e2 - seventh; int e4 = e3 + seventh; int e5 = e4 + seventh;
5.将这5个元素进行插入排序
// Sort these elements using insertion sort if (a[e2] < a[e1]) { long t = a[e2]; a[e2] = a[e1]; a[e1] = t; } if (a[e3] < a[e2]) { long t = a[e3]; a[e3] = a[e2]; a[e2] = t; if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } } if (a[e4] < a[e3]) { long t = a[e4]; a[e4] = a[e3]; a[e3] = t; if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t; if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } } } if (a[e5] < a[e4]) { long t = a[e5]; a[e5] = a[e4]; a[e4] = t; if (t < a[e3]) { a[e4] = a[e3]; a[e3] = t; if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t; if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } } } }
6. 选取a[e2],a[e4]分别作为pivot1,pivot2。由于步骤5进行了排序,所以必有pivot1 <=pivot2。定义两个指针less和great,less从最左边开始向右遍历,一直找到第一个不小于pivot1的元素,great从右边开始向左遍历,一直找到第一个不大于pivot2的元素。
/* * Use the second and fourth of the five sorted elements as pivots. * These values are inexpensive approximations of the first and * second terciles of the array. Note that pivot1 <= pivot2. */ int pivot1 = a[e2]; int pivot2 = a[e4]; /* * The first and the last elements to be sorted are moved to the * locations formerly occupied by the pivots. When partitioning * is complete, the pivots are swapped back into their final * positions, and excluded from subsequent sorting. */ a[e2] = a[left]; a[e4] = a[right]; /* * Skip elements, which are less or greater than pivot values. */ while (a[++less] < pivot1); while (a[--great] > pivot2);
7. 接着定义指针k从less-1开始向右遍历至great,把小于pivot1的元素移动到less左边,大于pivot2的元素移动到great右边。这里要注意,我们已知great处的元素小于pivot2,但是它于pivot1的大小关系,还需要进行判断,如果比pivot1还小,需要移动到到less左边,否则只需要交换到k处。
/* * Partitioning: * * left part center part right part * +--------------------------------------------------------------+ * | < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 | * +--------------------------------------------------------------+ * ^ ^ ^ * | | | * less k great * * Invariants: * * all in (left, less) < pivot1 * pivot1 <= all in [less, k) <= pivot2 * all in (great, right) > pivot2 * * Pointer k is the first index of ?-part. */ outer: for (int k = less - 1; ++k <= great; ) { short ak = a[k]; if (ak < pivot1) { // Move a[k] to left part a[k] = a[less]; /* * Here and below we use "a[i] = b; i++;" instead * of "a[i++] = b;" due to performance issue. */ a[less] = ak; ++less; } else if (ak > pivot2) { // Move a[k] to right part while (a[great] > pivot2) { if (great-- == k) { break outer; } } if (a[great] < pivot1) { // a[great] <= pivot2 a[k] = a[less]; a[less] = a[great]; ++less; } else { // pivot1 <= a[great] <= pivot2 a[k] = a[great]; } /* * Here and below we use "a[i] = b; i--;" instead * of "a[i--] = b;" due to performance issue. */ a[great] = ak; --great; } }
8. 将枢轴交换到它们的最终位置
// Swap pivots into their final positions a[left] = a[less - 1]; a[less - 1] = pivot1; a[right] = a[great + 1]; a[great + 1] = pivot2;
9. 递归排序左右部分,不包括已知的枢轴
// Sort left and right parts recursively, excluding known pivots sort(a, left, less - 2, leftmost); sort(a, great + 2, right, false);
10. 对于中间的部分,如果大于4/7的数组长度,递归中间部分
/* * If center part is too large (comprises > 4/7 of the array), * swap internal pivot values to ends. */ if (less < e1 && e5 < great) { /* * Skip elements, which are equal to pivot values. */ while (a[less] == pivot1) { ++less; } while (a[great] == pivot2) { --great; } /* * Partitioning: * * left part center part right part * +----------------------------------------------------------+ * | == pivot1 | pivot1 < && < pivot2 | ? | == pivot2 | * +----------------------------------------------------------+ * ^ ^ ^ * | | | * less k great * * Invariants: * * all in (*, less) == pivot1 * pivot1 < all in [less, k) < pivot2 * all in (great, *) == pivot2 * * Pointer k is the first index of ?-part. */ outer: for (int k = less - 1; ++k <= great; ) { short ak = a[k]; if (ak == pivot1) { // Move a[k] to left part a[k] = a[less]; a[less] = ak; ++less; } else if (ak == pivot2) { // Move a[k] to right part while (a[great] == pivot2) { if (great-- == k) { break outer; } } if (a[great] == pivot1) { // a[great] < pivot2 a[k] = a[less]; /* * Even though a[great] equals to pivot1, the * assignment a[less] = pivot1 may be incorrect, * if a[great] and pivot1 are floating-point zeros * of different signs. Therefore in float and * double sorting methods we have to use more * accurate assignment a[less] = a[great]. */ a[less] = pivot1; ++less; } else { // pivot1 < a[great] < pivot2 a[k] = a[great]; } a[great] = ak; --great; } } } // Sort center part recursively sort(a, less, great, false);
4 小结
Arrays.sort对升序数组、降序数组和重复数组的排序效率有了很大的提升,这里面有几个重大的优化。
- 对于小数组来说,插入排序效率更高,每次递归到小于47的大小时,用插入排序代替快排,明显提升了性能。
- 双轴快排使用两个pivot,每轮把数组分成3段,在没有明显增加比较次数的情况下巧妙地减少了递归次数。
- pivot的选择上增加了随机性,却没有带来随机数的开销。
- 对重复数据进行了优化处理,避免了不必要交换和递归。
总结
以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。