Arrays.sort如何实现降序排序

Arrays.sort实现降序排序

在调用Arrays.sort()对数组进行排序时,默认是升序排序的,如果想让数组降序排序,有下面两种方法:

1.Collections的reverseOrder

import java.util.*;
 
public class Main {
    public static void main(String[] args) {
//        注意这里是Integer,不是int
        Integer[] arr={9,8,7,6,5,4,3,2,1};
        Arrays.sort(arr,Collections.reverseOrder());
        for(int i:arr){
            System.out.println(i);
        }
    }
}

2.利用Comparator接口复写compare

import java.util.*;
 
public class Main {
    public static void main(String[] args) {
        Integer[] arr={9,8,7,6,5,4,3,2,1};
        Comparator cmp=new CMP();
        Arrays.sort(arr,cmp);
        for(int i:arr){
            System.out.println(i);
        }
    }
}
class CMP implements Comparator{
    @Override //可以去掉。作用是检查下面的方法名是不是父类中所有的
    public int compare(Integer a,Integer b){
//        两种都可以,升序排序的话反过来就行
//        return a-b<0?1:-1;
        return b-a;
    }
}

注意:如果需要改变默认的排列方式,不能使用基本类型(int,char等)定义变量,而应该用对应的类

Arrays.sort底层原理

概述

Collections.sort()方法底层调用的也是Arrays.sort()方法,下面我们通过测试用例debug,探究一下其源码,首先说一下结果,使用到了插入排序,双轴快排,归并排序

双轴快排(DualPivotQuicksort): 顾名思义有两个轴元素pivot1,pivot2,且pivot ≤
pivot2,将序列分成三段:x < pivot1、pivot1 ≤ x ≤ pivot2、x >pivot2,然后分别对三段进行递归。这个算法通常会比传统的快排效率更高,也因此被作为Arrays.java中给基本类型的数据排序的具体实现。

大致流程:

Arrays.sort如何实现降序排序_第1张图片

快速排序部分展开


Arrays.sort如何实现降序排序_第2张图片

Arrays.sort如何实现降序排序_第3张图片

Arrays.sort如何实现降序排序_第4张图片

案例

	public static void main(String[] args) {
        int[] nums = new int[]{6,5,4,3,2,1};
        List list = Arrays.asList(6, 5, 4, 3, 2, 1);
        Arrays.sort(nums);
        Collections.sort(list);
        System.out.println(Arrays.toString(nums));
        System.out.println(list);

    }

运行结果

在这里插入图片描述

1 进入Arrays.sort()方法

/**
     * Sorts the specified array into ascending numerical order.
     *
     * 

Implementation note: The sorting algorithm is a Dual-Pivot Quicksort * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm * offers O(n log(n)) performance on many data sets that cause other * quicksorts to degrade to quadratic performance, and is typically * faster than traditional (one-pivot) Quicksort implementations. * * @param a the array to be sorted */ public static void sort(int[] a) { DualPivotQuicksort.sort(a, 0, a.length - 1, null, 0, 0); }

Arrays.sort如何实现降序排序_第5张图片

方法上的注释

Arrays.sort如何实现降序排序_第6张图片

2 进入DualPivotQuicksort类内部的静态方法sort

方法上的注释

Arrays.sort如何实现降序排序_第7张图片

3 走sort的流程

在这里插入图片描述


在这里插入图片描述

1. 排序范围小于286的数组使用快速排序

 	// Use Quicksort on small arrays
    if (right - left < QUICKSORT_THRESHOLD) {
            sort(a, left, right, true);
            return;
    }
    // Merge sort
    ......

2. 进入sort方法,判断数组长度是否小于47,小于则直接采用插入排序,否则执行3。

Arrays.sort如何实现降序排序_第8张图片


Arrays.sort如何实现降序排序_第9张图片

	 // Use insertion sort on tiny arrays
    if (length < INSERTION_SORT_THRESHOLD) {
	   // Insertion sort
	   ......
    }

3. 用公式length/8+length/64+1近似计算出数组长度的1/7。

// Inexpensive approximation of length / 7
int seventh = (length >> 3) + (length >> 6) + 1;

4. 取5个根据经验得出的等距点。

Arrays.sort如何实现降序排序_第10张图片

		/*
         * Sort five evenly spaced elements around (and including) the
         * center element in the range. These elements will be used for
         * pivot selection as described below. The choice for spacing
         * these elements was empirically determined to work well on
         * a wide variety of inputs.
         */
        int e3 = (left + right) >>> 1; // The midpoint
        int e2 = e3 - seventh;
        int e1 = e2 - seventh;
        int e4 = e3 + seventh;
        int e5 = e4 + seventh;

5.将这5个元素进行插入排序

		// Sort these elements using insertion sort
        if (a[e2] < a[e1]) { long t = a[e2]; a[e2] = a[e1]; a[e1] = t; }

        if (a[e3] < a[e2]) { long t = a[e3]; a[e3] = a[e2]; a[e2] = t;
            if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
        }
        if (a[e4] < a[e3]) { long t = a[e4]; a[e4] = a[e3]; a[e3] = t;
            if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
                if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
            }
        }
        if (a[e5] < a[e4]) { long t = a[e5]; a[e5] = a[e4]; a[e4] = t;
            if (t < a[e3]) { a[e4] = a[e3]; a[e3] = t;
                if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
                    if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
                }
            }
        }

6. 选取a[e2],a[e4]分别作为pivot1,pivot2。由于步骤5进行了排序,所以必有pivot1 <=pivot2。定义两个指针less和great,less从最左边开始向右遍历,一直找到第一个不小于pivot1的元素,great从右边开始向左遍历,一直找到第一个不大于pivot2的元素。

		 /*
         * Use the second and fourth of the five sorted elements as pivots.
         * These values are inexpensive approximations of the first and
         * second terciles of the array. Note that pivot1 <= pivot2.
         */
        int pivot1 = a[e2];
        int pivot2 = a[e4];
        /*
         * The first and the last elements to be sorted are moved to the
         * locations formerly occupied by the pivots. When partitioning
         * is complete, the pivots are swapped back into their final
         * positions, and excluded from subsequent sorting.
         */
        a[e2] = a[left];
        a[e4] = a[right];
        /*
         * Skip elements, which are less or greater than pivot values.
         */
        while (a[++less] < pivot1);
        while (a[--great] > pivot2);

7. 接着定义指针k从less-1开始向右遍历至great,把小于pivot1的元素移动到less左边,大于pivot2的元素移动到great右边。这里要注意,我们已知great处的元素小于pivot2,但是它于pivot1的大小关系,还需要进行判断,如果比pivot1还小,需要移动到到less左边,否则只需要交换到k处。

			/*
             * Partitioning:
             *
             *   left part           center part                   right part
             * +--------------------------------------------------------------+
             * |  < pivot1  |  pivot1 <= && <= pivot2  |    ?    |  > pivot2  |
             * +--------------------------------------------------------------+
             *               ^                          ^       ^
             *               |                          |       |
             *              less                        k     great
             *
             * Invariants:
             *
             *              all in (left, less)   < pivot1
             *    pivot1 <= all in [less, k)     <= pivot2
             *              all in (great, right) > pivot2
             *
             * Pointer k is the first index of ?-part.
             */
            outer:
            for (int k = less - 1; ++k <= great; ) {
                short ak = a[k];
                if (ak < pivot1) { // Move a[k] to left part
                    a[k] = a[less];
                    /*
                     * Here and below we use "a[i] = b; i++;" instead
                     * of "a[i++] = b;" due to performance issue.
                     */
                    a[less] = ak;
                    ++less;
                } else if (ak > pivot2) { // Move a[k] to right part
                    while (a[great] > pivot2) {
                        if (great-- == k) {
                            break outer;
                        }
                    }
                    if (a[great] < pivot1) { // a[great] <= pivot2
                        a[k] = a[less];
                        a[less] = a[great];
                        ++less;
                    } else { // pivot1 <= a[great] <= pivot2
                        a[k] = a[great];
                    }
                    /*
                     * Here and below we use "a[i] = b; i--;" instead
                     * of "a[i--] = b;" due to performance issue.
                     */
                    a[great] = ak;
                    --great;
                }
            }

8. 将枢轴交换到它们的最终位置

	// Swap pivots into their final positions
    a[left]  = a[less  - 1]; a[less  - 1] = pivot1;
    a[right] = a[great + 1]; a[great + 1] = pivot2;

9. 递归排序左右部分,不包括已知的枢轴

		// Sort left and right parts recursively, excluding known pivots
        sort(a, left, less - 2, leftmost);
        sort(a, great + 2, right, false);

10. 对于中间的部分,如果大于4/7的数组长度,递归中间部分

			/*
             * If center part is too large (comprises > 4/7 of the array),
             * swap internal pivot values to ends.
             */
            if (less < e1 && e5 < great) {
                /*
                 * Skip elements, which are equal to pivot values.
                 */
                while (a[less] == pivot1) {
                    ++less;
                }

                while (a[great] == pivot2) {
                    --great;
                }

                /*
                 * Partitioning:
                 *
                 *   left part         center part                  right part
                 * +----------------------------------------------------------+
                 * | == pivot1 |  pivot1 < && < pivot2  |    ?    | == pivot2 |
                 * +----------------------------------------------------------+
                 *              ^                        ^       ^
                 *              |                        |       |
                 *             less                      k     great
                 *
                 * Invariants:
                 *
                 *              all in (*,  less) == pivot1
                 *     pivot1 < all in [less,  k)  < pivot2
                 *              all in (great, *) == pivot2
                 *
                 * Pointer k is the first index of ?-part.
                 */
                outer:
                for (int k = less - 1; ++k <= great; ) {
                    short ak = a[k];
                    if (ak == pivot1) { // Move a[k] to left part
                        a[k] = a[less];
                        a[less] = ak;
                        ++less;
                    } else if (ak == pivot2) { // Move a[k] to right part
                        while (a[great] == pivot2) {
                            if (great-- == k) {
                                break outer;
                            }
                        }
                        if (a[great] == pivot1) { // a[great] < pivot2
                            a[k] = a[less];
                            /*
                             * Even though a[great] equals to pivot1, the
                             * assignment a[less] = pivot1 may be incorrect,
                             * if a[great] and pivot1 are floating-point zeros
                             * of different signs. Therefore in float and
                             * double sorting methods we have to use more
                             * accurate assignment a[less] = a[great].
                             */
                            a[less] = pivot1;
                            ++less;
                        } else { // pivot1 < a[great] < pivot2
                            a[k] = a[great];
                        }
                        a[great] = ak;
                        --great;
                    }
                }
            }

            // Sort center part recursively
            sort(a, less, great, false);

4 小结

Arrays.sort对升序数组、降序数组和重复数组的排序效率有了很大的提升,这里面有几个重大的优化。

  • 对于小数组来说,插入排序效率更高,每次递归到小于47的大小时,用插入排序代替快排,明显提升了性能。
  • 双轴快排使用两个pivot,每轮把数组分成3段,在没有明显增加比较次数的情况下巧妙地减少了递归次数。
  • pivot的选择上增加了随机性,却没有带来随机数的开销。
  • 对重复数据进行了优化处理,避免了不必要交换和递归。

总结

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。

你可能感兴趣的:(Arrays.sort如何实现降序排序)