【高等数学】常用函数的n阶导数

{ f ( x ) = 1 x + a f ( n ) ( x ) = ( − 1 ) n n ! ( x + a ) n + 1 (1) \left\{ \begin{aligned} f(x) = \frac{1}{x+ a}\\ f^{(n)}(x) = (-1)^n\frac{n!}{(x+a)^{n + 1}} \end{aligned} \right.\tag{1} f(x)=x+a1f(n)(x)=(1)n(x+a)n+1n!(1)

{ f ( x ) = x n f n ( x ) = n ! (2) \left\{ \begin{aligned} f(x) = x ^ n\\ f^{n}(x) = n! \end{aligned} \right.\tag{2} {f(x)=xnfn(x)=n!(2)

{ f ( x ) = ln ⁡ x f n ( x ) = ( − 1 ) n − 1 ( n − 1 ) ! x n (3) \left\{ \begin{aligned} f(x) = \ln{x}\\ f^{n}(x) = (-1)^{n-1}\frac{(n-1)!}{x^n} \end{aligned} \right.\tag{3} f(x)=lnxfn(x)=(1)n1xn(n1)!(3)

{ f ( x ) = e x f n ( x ) = ( − 1 ) n e ( − x ) (4) \left\{ \begin{aligned} f(x) = e^x\\ f^{n}(x) = (-1)^ne^{(-x)} \end{aligned} \right.\tag{4} {f(x)=exfn(x)=(1)ne(x)(4)

你可能感兴趣的:(高等数学,算法,线性代数)