点云处理——将激光雷达数据投影到二维图像

编辑丨3D视觉开发者社区

“前视图”投影

为了将激光雷达传感器的“前视图”展平为2D图像,必须将3D空间中的点投影到可以展开的圆柱形表面上,以形成平面。

本文代码参考自论文《Vehicle Detection from 3D Lidar Using Fully Convolutional Network》 

论文链接:https://arxiv.org/pdf/1608.07916.pdf

点云处理——将激光雷达数据投影到二维图像_第1张图片

点云处理——将激光雷达数据投影到二维图像_第2张图片

# h_res = horizontal resolution of the lidar sensor
# v_res = vertical resolution of the lidar sensor
x_img = arctan2(y_lidar, x_lidar)/ h_res 
y_img = np.arctan2(z_lidar, np.sqrt(x_lidar**2 + y_lidar**2))/ v_res

问题在于这样做会将图像的接缝直接放在汽车的右侧。将接缝定位在汽车的最后部更有意义,因此前部和侧部更重要的区域是不间断的。让这些重要区域不间断将使卷积神经网络更容易识别那些重要区域中的整个对象。
以下代码解决了这个问题。

# h_res = horizontal resolution of the lidar sensor
# v_res = vertical resolution of the lidar sensor
x_img = np.arctan2(-y_lidar, x_lidar)/ h_res # seam in the back
y_img = np.arctan2(z_lidar, np.sqrt(x_lidar**2 + y_lidar**2))/ v_res

沿每个轴配置刻度

变量h r e s h_{res}和v r e s v_{res}非常依赖于所使用的LIDAR传感器。在KTTI数据集中,使用的传感器是Velodyne HDL 64E。根据Velodyne HDL 64E的规格表,它具有以下重要特征:

  • 垂直视野为26.9度,分辨率为0.4度,垂直视野被分为传感器上方+2度,传感器下方-24.9度

  • 360度的水平视野,分辨率为0.08-0.35(取决于旋转速度)

  • 旋转速率可以选择在5-20Hz之间

可以按以下方式更新代码:

# Resolution and Field of View of LIDAR sensor
h_res = 0.35         # horizontal resolution, assuming rate of 20Hz is used 
v_res = 0.4          # vertical res
v_fov = (-24.9, 2.0) # Field of view (-ve, +ve) along vertical axis
v_fov_total = -v_fov[0] + v_fov[1] 


# Convert to Radians
v_res_rad = v_res * (np.pi/180)
h_res_rad = h_res * (np.pi/180)


# Project into image coordinates
x_img = np.arctan2(-y_lidar, x_lidar)/ h_res_rad
y_img = np.arctan2(z_lidar, d_lidar)/ v_res_rad

然而,这导致大约一半的点在x轴负方向上,并且大多数在y轴负方向上。为了投影到2D图像,需要将最小值设置为(0,0),所以需要做一些改变:

# SHIFT COORDINATES TO MAKE 0,0 THE MINIMUM
x_min = -360.0/h_res/2    # Theoretical min x value based on specs of sensor
x_img = x_img - x_min     # Shift
x_max = 360.0/h_res       # Theoretical max x value after shifting


y_min = v_fov[0]/v_res    # theoretical min y value based on specs of sensor
y_img = y_img - y_min     # Shift
y_max = v_fov_total/v_res # Theoretical max x value after shifting
y_max = y_max + 5         # UGLY: Fudge factor because the calculations based on
                          # spec sheet do not seem to match the range of angles
                          # collected by sensor in the data.


绘制二维图像

将3D点投影到2D坐标点,最小值为(0,0),可以将这些点数据绘制成2D图像。

pixel_values = -d_lidar # Use depth data to encode the value for each pixel
cmap = "jet"            # Color map to use
dpi = 100               # Image resolution
fig, ax = plt.subplots(figsize=(x_max/dpi, y_max/dpi), dpi=dpi)
ax.scatter(x_img,y_img, s=1, c=pixel_values, linewidths=0, alpha=1, cmap=cmap)
ax.set_axis_bgcolor((0, 0, 0)) # Set regions with no points to black
ax.axis('scaled')              # {equal, scaled}
ax.xaxis.set_visible(False)    # Do not draw axis tick marks
ax.yaxis.set_visible(False)    # Do not draw axis tick marks
plt.xlim([0, x_max])   # prevent drawing empty space outside of horizontal FOV
plt.ylim([0, y_max])   # prevent drawing empty space outside of vertical FOV
fig.savefig("/tmp/depth.png", dpi=dpi, bbox_inches='tight', pad_inches=0.0)


完整代码

把上面所有的代码放在一个函数中。

def lidar_to_2d_front_view(points,
                           v_res,
                           h_res,
                           v_fov,
                           val="depth",
                           cmap="jet",
                           saveto=None,
                           y_fudge=0.0
                           ):
    """ Takes points in 3D space from LIDAR data and projects them to a 2D
        "front view" image, and saves that image.


    Args:
        points: (np array)
            The numpy array containing the lidar points.
            The shape should be Nx4
            - Where N is the number of points, and
            - each point is specified by 4 values (x, y, z, reflectance)
        v_res: (float)
            vertical resolution of the lidar sensor used.
        h_res: (float)
            horizontal resolution of the lidar sensor used.
        v_fov: (tuple of two floats)
            (minimum_negative_angle, max_positive_angle)
        val: (str)
            What value to use to encode the points that get plotted.
            One of {"depth", "height", "reflectance"}
        cmap: (str)
            Color map to use to color code the `val` values.
            NOTE: Must be a value accepted by matplotlib's scatter function
            Examples: "jet", "gray"
        saveto: (str or None)
            If a string is provided, it saves the image as this filename.
            If None, then it just shows the image.
        y_fudge: (float)
            A hacky fudge factor to use if the theoretical calculations of
            vertical range do not match the actual data.


            For a Velodyne HDL 64E, set this value to 5.
    """


    # DUMMY PROOFING
    assert len(v_fov) ==2, "v_fov must be list/tuple of length 2"
    assert v_fov[0] <= 0, "first element in v_fov must be 0 or negative"
    assert val in {"depth", "height", "reflectance"}, \
        'val must be one of {"depth", "height", "reflectance"}'




    x_lidar = points[:, 0]
    y_lidar = points[:, 1]
    z_lidar = points[:, 2]
    r_lidar = points[:, 3] # Reflectance
    # Distance relative to origin when looked from top
    d_lidar = np.sqrt(x_lidar ** 2 + y_lidar ** 2)
    # Absolute distance relative to origin
    # d_lidar = np.sqrt(x_lidar ** 2 + y_lidar ** 2, z_lidar ** 2)


    v_fov_total = -v_fov[0] + v_fov[1]


    # Convert to Radians
    v_res_rad = v_res * (np.pi/180)
    h_res_rad = h_res * (np.pi/180)


    # PROJECT INTO IMAGE COORDINATES
    x_img = np.arctan2(-y_lidar, x_lidar)/ h_res_rad
    y_img = np.arctan2(z_lidar, d_lidar)/ v_res_rad


    # SHIFT COORDINATES TO MAKE 0,0 THE MINIMUM
    x_min = -360.0 / h_res / 2  # Theoretical min x value based on sensor specs
    x_img -= x_min              # Shift
    x_max = 360.0 / h_res       # Theoretical max x value after shifting


    y_min = v_fov[0] / v_res    # theoretical min y value based on sensor specs
    y_img -= y_min              # Shift
    y_max = v_fov_total / v_res # Theoretical max x value after shifting


    y_max += y_fudge            # Fudge factor if the calculations based on
                                # spec sheet do not match the range of
                                # angles collected by in the data.


    # WHAT DATA TO USE TO ENCODE THE VALUE FOR EACH PIXEL
    if val == "reflectance":
        pixel_values = r_lidar
    elif val == "height":
        pixel_values = z_lidar
    else:
        pixel_values = -d_lidar


    # PLOT THE IMAGE
    cmap = "jet"            # Color map to use
    dpi = 100               # Image resolution
    fig, ax = plt.subplots(figsize=(x_max/dpi, y_max/dpi), dpi=dpi)
    ax.scatter(x_img,y_img, s=1, c=pixel_values, linewidths=0, alpha=1, cmap=cmap)
    ax.set_axis_bgcolor((0, 0, 0)) # Set regions with no points to black
    ax.axis('scaled')              # {equal, scaled}
    ax.xaxis.set_visible(False)    # Do not draw axis tick marks
    ax.yaxis.set_visible(False)    # Do not draw axis tick marks
    plt.xlim([0, x_max])   # prevent drawing empty space outside of horizontal FOV
    plt.ylim([0, y_max])   # prevent drawing empty space outside of vertical FOV


    if saveto is not None:
        fig.savefig(saveto, dpi=dpi, bbox_inches='tight', pad_inches=0.0)
    else:
        fig.show()

以下是一些用例:

import matplotlib.pyplot as plt
import numpy as np


HRES = 0.35         # horizontal resolution (assuming 20Hz setting)
VRES = 0.4          # vertical res
VFOV = (-24.9, 2.0) # Field of view (-ve, +ve) along vertical axis
Y_FUDGE = 5         # y fudge factor for velodyne HDL 64E


lidar_to_2d_front_view(lidar, v_res=VRES, h_res=HRES, v_fov=VFOV, val="depth",
                       saveto="/tmp/lidar_depth.png", y_fudge=Y_FUDGE)


lidar_to_2d_front_view(lidar, v_res=VRES, h_res=HRES, v_fov=VFOV, val="height",
                       saveto="/tmp/lidar_height.png", y_fudge=Y_FUDGE)


lidar_to_2d_front_view(lidar, v_res=VRES, h_res=HRES, v_fov=VFOV,
                       val="reflectance", saveto="/tmp/lidar_reflectance.png",
                       y_fudge=Y_FUDGE)


产生以下三个图像:

Depth

Height

Reflectance

后续操作步骤

目前创建每个图像非常慢,可能是因为matplotlib,它不能很好地处理大量的散点。
因此需要创建一个使用numpy或PIL的实现。

测试

需要安装python-pcl,加载PCD文件。

sudo apt-get install python-pip


sudo apt-get install python-dev


sudo pip install Cython==0.25.2


sudo pip install numpy


sudo apt-get install git


git clone https://github.com/strawlab/python-pcl.git


cd python-pcl/


python setup.py build_ext -i


python setup.py install


可惜,sudo pip install Cython==0.25.2这步报错:

“Cannot uninstall ‘Cython’. It is a distutils installed project and thus we cannot accurately determine which files belong to it which would lead to only a partial uninstall.”

换个方法,安装pypcd:

pip install pypcd

查看 https://pypi.org/project/pypcd/ ,用例如下:

Example
-------


.. code:: python


import pypcd
# also can read from file handles.
pc = pypcd.PointCloud.from_path('foo.pcd')
# pc.pc_data has the data as a structured array
# pc.fields, pc.count, etc have the metadata


# center the x field
pc.pc_data['x'] -= pc.pc_data['x'].mean()


# save as binary compressed
pc.save_pcd('bar.pcd', compression='binary_compressed')


测试数据结构:

“ >>> lidar = pypcd.PointCloud.from_path(‘~/pointcloud-processing/000000.pcd’)

>>> lidar.pc_data

array([(18.323999404907227, 0.04899999871850014, 0.8289999961853027, 0.0),

(18.3439998626709, 0.10599999874830246, 0.8289999961853027, 0.0),

(51.29899978637695, 0.5049999952316284, 1.944000005722046, 0.0),

…,

(3.7139999866485596, -1.3910000324249268, -1.7330000400543213, 0.4099999964237213),

(3.9670000076293945, -1.4739999771118164, -1.8569999933242798, 0.0),

(0.0, 0.0, 0.0, 0.0)],

dtype=[(‘x’, ‘

>>> lidar.pc_data[‘x’]

array([ 18.3239994 , 18.34399986, 51.29899979, …, 3.71399999,

3.96700001, 0. ], dtype=float32) ”

加载PCD:

import pypcd


lidar = pypcd.PointCloud.from_path('000000.pcd')

x_lidar:

x_lidar = points[’x‘]

结果:

Depth

Height

Reflectance

本文为CSDN博主「W_Tortoise」的原创文章,点击“阅读原文”可查看原文出处。

本文仅做学术分享,如有侵权,请联系删文。

下载1

在「计算机视觉工坊」公众号后台回复:深度学习,即可下载深度学习算法、3D深度学习、深度学习框架、目标检测、GAN等相关内容近30本pdf书籍。

下载2

在「计算机视觉工坊」公众号后台回复:计算机视觉,即可下载计算机视觉相关17本pdf书籍,包含计算机视觉算法、Python视觉实战、Opencv3.0学习等。

下载3

在「计算机视觉工坊」公众号后台回复:SLAM,即可下载独家SLAM相关视频课程,包含视觉SLAM、激光SLAM精品课程。

重磅!计算机视觉工坊-学习交流群已成立

扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会、顶刊、SCI、EI等写作与投稿事宜。

同时也可申请加入我们的细分方向交流群,目前主要有ORB-SLAM系列源码学习、3D视觉CV&深度学习SLAM三维重建点云后处理自动驾驶、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、深度估计、学术交流、求职交流等微信群,请扫描下面微信号加群,备注:”研究方向+学校/公司+昵称“,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进去相关微信群。原创投稿也请联系。

点云处理——将激光雷达数据投影到二维图像_第3张图片

▲长按加微信群或投稿

点云处理——将激光雷达数据投影到二维图像_第4张图片

▲长按关注公众号

3D视觉从入门到精通知识星球:针对3D视觉领域的知识点汇总、入门进阶学习路线、最新paper分享、疑问解答四个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近3000星球成员为创造更好的AI世界共同进步,知识星球入口:

学习3D视觉核心技术,扫描查看介绍,3天内无条件退款

点云处理——将激光雷达数据投影到二维图像_第5张图片

 圈里有高质量教程资料、可答疑解惑、助你高效解决问题

觉得有用,麻烦给个赞和在看~  点云处理——将激光雷达数据投影到二维图像_第6张图片

你可能感兴趣的:(传感器,计算机视觉,人工智能,opencv,办公软件)