- PSINS工具箱函数介绍——ggnss(ggpsvars+gbdvars+gglovars)
MATLAB卡尔曼
PSINS函数matlabPSINS
文章目录关于工具箱工具箱概述学习路径指南GNSS参数初始化函数`ggnss`函数功能参数体系结构典型应用场景系统参数初始化操作指南执行流程运行结果解析函数源码深度解析代码架构扩展开发建议关于工具箱kfinit是kf的参数初始化函数,用于初始化滤波参数本文所述的代码需要基于PSINS工具箱,工具箱的讲解:PSINS初学指导:https://blog.csdn.net/callmeup/article
- SAT-3D饮食行为训练系统在营养教学中的应用心得体会
上海GR
经验分享
在营养学领域的探索之旅中,我有幸深入接触并实践了SAT-3D膳食诊断和饮食行为训练系统(以下简称SAT-3D系统,研制单位:上海共荣医学科技有限公司),这一经历不仅极大地拓宽了我的专业视野,也让我在营养实训教学上获得了前所未有的启示与感悟。SAT-3D系统,作为一个集科学性与实用性于一体的膳食评估与行为干预工具,其在营养实训教学中的应用,无疑为传统的教学模式注入了一股新鲜血液,让我深刻体会到科技赋
- CTF学习法则——寒假篇 新手赶快收藏吧!
网络安全技术分享
学习网络安全web安全CTF
CTF(CapturetheFlag)是网络安全领域中的一种比赛形式,涵盖了漏洞利用、逆向工程、加密解密、编码解码等多方面的技术,参与者通过解决难题(称为“Flag”)获得积分。对于想要在寒假期间提升CTF技能的同学们,以下是一些有效的学习法则,可以帮助你高效地进行学习和提升:1.合理规划学习时间寒假时间有限,建议制定合理的学习计划:每天固定时间学习:保持稳定的学习节奏,避免临时抱佛脚。分阶段学习
- 灰色系统理论及其关联分析方法
青橘MATLAB学习
算法matlab数学建模
前言在现实世界中,许多系统的内部结构、参数及特征并未完全被人们认知。例如,粮食产量受肥料、气象、政策等多因素影响,但各因素与产量间的定量关系难以明确。这类部分信息已知、部分信息未知的系统被称为灰色系统。灰色系统理论从数据本征特性出发,通过有限信息挖掘系统规律,为信息匮乏或紊乱的问题提供建模与分析方法。本章将介绍灰色系统的基本概念及其核心方法——关联分析,揭示如何通过动态态势量化解决实际问题。§1灰
- MapEX - Mind the map! Accounting for existing maps when estimating online HDMaps from sensors.
zisuina_2
python深度学习3d
MapEX加入地图编码的MAP检测论文链接MapEX背景与动机:HD地图的重要性与高成本:HD地图是自动驾驶的关键组成部分,但其采集和维护成本极高。现有方法的局限性:现有方法主要依赖传感器数据生成HD地图,但通常忽略了已有的HD地图资源。当前方法最多只是对低质量地图进行地理定位或使用通用的已知地图数据库,效率和效果都有限。提出的解决方案:充分利用现有地图:在HD地图估计中引入现有HD地图资源,具体
- 【机器学习】基于3D CNN通过CT图像分类预测肺炎
MUKAMO
AIPython应用机器学习深度学习人工智能神经网络3DCNN
1.引言1.1.研究背景在医学诊断中,医生通过分析CT影像来预测疾病时,面临一些挑战和局限性:图像信息的广度与复杂性:CT扫描生成的大量图像对医生来说既是信息的宝库也是处理上的负担。每组CT数据可能包含数百张切片,医生必须迅速审阅这些图像,以便捕捉到病变的微小细节。这种庞大的信息量要求医生在有限的时间内做出精准诊断,但同时也增加了漏诊或误诊的风险。部分容积效应也可能模糊小病变的边界,使得准确诊断变
- Leave No Context Behind: Efficient Infinite Context Transformers with Infini-attention
UnknownBody
LLMDailyLLMcontext语言模型人工智能
本文是LLM系列文章,针对《LeaveNoContextBehind:EfficientInfiniteContextTransformerswithInfini-attention》的翻译。不让任何上下文掉队:无限关注的高效无限上下文Transformer摘要1引言2方法3实验4相关工作5结论摘要这项工作介绍了一种将基于Transformer的大型语言模型(LLM)扩展到具有有限内存和计算的无限
- 腿足机器人之五- 粒子滤波
shichaog
腿足机器人机器人
腿足机器人之五粒子滤波直方图滤波粒子滤波上一篇博客使用的是高斯分布结合贝叶斯准则来估计机器人状态,本篇是基于直方图和粒子滤波器这两种无参滤波器估计机器人状态。直方图方法将状态空间分解成有限多个区域,并用直方图表示后验概率。直方图为每个区域分配一个单独的累积概率;可以将其视为对连续密度函数的逐段常数近似。第二种技术通过有限多个样本来表示后验概率。由此产生的滤波器被称为粒子滤波器,在某些机器人问题中获
- 仿叮咚买菜鸿蒙原生APP
weioule
鸿蒙原生应用harmonyos华为
#DingdongShopping这是一个原生鸿蒙版的仿叮咚买菜APP项目鸿蒙Next发布至今已经有一年多的时间了,但有时候我们想要实现一些复杂的功能或者效果,在开发文档上查阅一些资料还是比较费时的,有可能还找不到我们想要的内容。而社会层面上分享的资料也比较有限,毕竟推出的时间相对安卓和苹果来说还是太短了,但一点也不妨碍大家学习鸿蒙的热情,因为鸿蒙生态大势已成,未来也会有更多的开发者相续分享出自己
- 如何用matlab进行部分式展开_[转载]用MATLAB进行部分分式展开
麦克羊
为了方便LAPLACE反变换,先对F(s)进行部分分式展开。根据F(s)分为具有不同极点的部分分式展开和具有多重极点的部分分式展开。分别讨论。不同极点的部分分式展开:F(s)=B(s)/A(s)=num/den=(b0*s^n+b1*s^(n-1)+...+bn)/(s^n+a1*s^(n-1)+...an)在matlab行向量中,num和den分别表示传递函数分子和分母的系数num=[b0b1.
- 【大模型】量化、剪枝、蒸馏
油泼辣子多加
深度学习剪枝人工智能算法
大模型的量化、剪枝和蒸馏是三种常用的模型优化技术,旨在减少模型的复杂性,降低计算资源消耗,并加速推理过程。下面是每种技术的详细介绍:1.量化(Quantization)量化是将浮点数表示的模型参数(通常是32位浮点数)转换为低精度表示(如8位整数)。这个过程可以显著减小模型的存储占用并提高计算效率,尤其在硬件资源有限的情况下,量化非常有效。量化可以分为以下几种类型:权重量化(WeightQuant
- 《第2章 位置与姿态描述》代码
神笔馬良
人工智能
最近在学习《视觉伺服/机器人学、机器视觉与控制》,发现书中的代码运行不通顺,原因可能是matlab升级后,部分函数的参数变化了。所以需要记录错误的代码和正确的代码。第一处:为了使上述推导更形象具体,下面我们将使用MATLAB工具箱展示一些具体数值化的例子。首先用函数se2创建一个齐次变换:错误代码T1=se2(1,2,30*pi/180)报错提示:错误使用matlabshared.spatialm
- 生成式AI如何重塑计算机视觉:自监督学习与稀疏计算的革命
ProgramHan
人工智能计算机视觉学习
生成式AI如何重塑计算机视觉:自监督学习与稀疏计算的革命引言:从“数据饥渴”到“智能涌现”传统计算机视觉高度依赖海量标注数据,但现实场景中标注成本高昂且覆盖范围有限。例如,医疗影像标注需专业医生耗时数月,工业缺陷检测需针对特定产线定制数据集。生成式AI(如Diffusion模型、自监督学习)的崛起,正在打破这一瓶颈——通过更高效的训练范式与计算架构,让机器学会“从无标注数据中看见世界”。(示意图:
- 酷克数据启动鲲鹏原生应用开发合作
数据库
4月28日,北京酷克数据科技有限公司(以下简称“酷克数据”)与华为举办鲲鹏原生应用开发启动仪式。酷克数据将基于鲲鹏硬件底座、OpenEuler、开发套件KunpengDevKit、应用使能套件KunpengBoostKit开展面向金融、政务、电信、能源、交通等重点行业的原生应用开发,打造基于鲲鹏架构的云数仓产品解决方案,并持续发布性能更优的鲲鹏商用软件版本,帮助企业构建高效、稳定、自主可控的数据底
- 生态碳汇涡度相关监测与通量数据分析
岁月如歌,青春不败
生态遥感数据分析碳汇生态科学涡度通量大涡模拟MATLAB
1、以涡度通量塔的高频观测数据,基于MATLAB:2、涡度通量观测基本概况:观测技术方法、数据获取与预处理等3、涡度通量数据质量控制:通量数据异常值识别与剔除等4、涡度通量数据缺失插补:结合气象数据进行通量数据缺失插补等5、涡度通量数据组分拆分:计算生态系统呼吸和总初级生产力等6、涡度通量数据可视化分析:绘制不同通量组分数据的时间变化等7、涡度通量与气象数据相关性:时间序列相关分析、回归分析等8、
- 【多微电网】含多微电网租赁共享储能的配电网博弈优化调度(Matlab代码实现)
科研_研学社
matlab
个人主页欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述2运行结果2.1原文运行结果12.1复现结果图12.2原文结果图22.2复现结果图23文献来源4Matlab代码、数据、文章1概述文献来源:摘要:该文提出多微电网并网系统租赁共享储能组成微电网联盟参与配电网调峰调度的优化调度策略,促进储能高效应用和新能
- 【多微电网】含多微电网租赁共享储能的配电网博弈优化调度(Matlab代码实现)
科研_G.E.M.
matlab
个人主页欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述2运行结果2.1原文运行结果12.1复现结果图12.2原文结果图22.2复现结果图23文献来源4Matlab代码、数据、文章1概述文献来源:摘要:该文提出多微电网并网系统租赁共享储能组成微电网联盟参与配电网调峰调度的优化调度策略,促进储能高效应用和新能
- 基于基于强化学习(Q-Learning)用于底层动态频谱接入(DSA)认知无线电网络的资源分配研究(Matlab代码实现)
长安程序猿
网络matlab开发语言
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述一、动态频谱接入(DSA)的基本原理与挑战1.DSA的核心机制2.关键挑战二、Q-Learning在DSA资源分配中的应用框架1.算法原理2.典型应用场景三、关键参数与模型设计1.状态空间定义2.动作空间设计3.奖励函数设计四、研究进展与优化方法1.
- flink核心特性
24k小善
flink大数据java架构
ApacheFlink核心特性详解一、流处理与批处理的统一Flink的核心设计理念之一是将流处理和批处理统一在一个框架中。这种统一性使得Flink在处理实时数据和批量数据时具有高度的灵活性和一致性。1.流处理与批处理的统一计算引擎流处理作为批处理的特例:Flink将批处理视为有限流(FiniteStream),从而实现了流处理和批处理的统一。统一API:Flink提供了DataStream和Dat
- 二十redis之gossip协议
我爱看明朝
后端
二十redis之gossip协议gossip协议是p2p方式的通信协议。通过节点之间不断交换信息,一段时间后所有节点都会知道整个集群完整的信息。gossip算法,意思是八卦算法,在办公室中只要一个人八卦一下,在有限的时间内,办公室内的所有人都会知道八卦消息。算法过程:集群中的一个节点广播自身信息,部分节点收到了信息,这些节点再继续在集群中传播这个节点的信息,一段时间后整个集群中都有了这个节点的信息
- MATLAB算法实战应用案例精讲-【目标检测】机器视觉-工业相机(补充篇)
林聪木
数码相机matlab算法
目录知识储备光学系统设计全过程算法原理工业相机基本参数以及选型工业相机基本参数:如何选择合适的工业相机:分辨率分辨率的定义与“检测/测量精度”的区别分辨率与相机的匹配相机关键参数设置工业相机的曝光、曝光时间、快门、增益什么是曝光?什么是快门影响曝光的因素工业相机-坐标系和机械手坐标系的标定工业相机-缺陷检测一、相机的选择(1)工业数字相机的分类:(2)相机的主要参数(3)工业数字摄像机主要接口类型
- 【matlab】大小键盘对应的Kbname
有点傻的小可爱
计算机外设
matlab中可以通过Kbname来识别键盘上的键。在写范式的时候,遇到一个问题,我想用大键盘上排成一行的数字按键评分,比如Kbname('1')表示键盘上的数字1,但是这种写法只能识别小键盘上的数字,无法达到我的目的,网上也没找到相关的资料,于是自己尝试。在尝试的过程中,我注意到大键盘上的数字shift之后是一些标点符号,于是我分别尝试了两种思路:1)Kbname('数字对应的标点符号'),比如
- LLM论文笔记 9: Neural Networks and the Chomsky Hierarchy
Zhouqi_Hua
大模型论文阅读论文阅读人工智能深度学习笔记语言模型
Arxiv日期:2022.9.29机构:GoogleDeepMind/Stanford关键词transformer架构原理乔姆斯基体系长度泛化核心结论1.虽然Transformer理论上具有图灵完备性,但在实践中能力受到位置不变性和有限记忆的限制2.Transformer在一些任务中表现较差,例如正则语言任务(如ParityCheck),表明其与Chomsky层级的对齐性不佳3.Transform
- [论文笔记] Cost-Effective Hyperparameter Optimization for Large Language Model Generation 大型语言模型生成推理超参优化
心心喵
论文笔记论文阅读语言模型人工智能
成本效益高的大型语言模型生成推理的超参数优化https://openreview.net/pdf?id=DoGmh8A39OChiWang1,SusanXueqingLiu2,AhmedH.Awadallah11微软研究院,雷德蒙德2史蒂文斯理工学院摘要大型语言模型(LLMs)因其生成能力引发了广泛关注,催生了各种商业应用。使用这些模型的高成本驱使应用构建者在有限的推理预算下最大化生成的价值。本文
- 【卡车无人机】遗传算法GA求解卡车联合无人机配送路径规划【含Matlab源码 XYDG001期】
Matlab领域
Matlab路径规划(高阶版)matlab
Matlab领域博客之家博主简介:985研究生,Matlab领域科研开发者;个人主页:Matlab领域代码获取方式:CSDNMatlab领域—代码获取方式座右铭:路漫漫其修远兮,吾将上下而求索。更多Matlab路径规划仿真内容点击①Matlab路径规划(高阶版)②付费专栏Matlab路径规划(进阶版)③付费专栏Matlab路径规划(初级版)⛳️关注CSDNMatlab领域,更多资源等你来!!⛄一、
- 51-31 CVPR’24 | VastGaussian,3D高斯大型场景重建
深圳季连AIgraphX
aiXpilot智驾大模型1自动驾驶智慧城市AIGC计算机视觉数据挖掘
2024年2月,清华大学、华为和中科院联合发布的VastGaussian模型,实现了基于3DGaussianSplatting进行大型场景高保真重建和实时渲染。Abstract现有基于NeRF大型场景重建方法,往往在视觉质量和渲染速度方面存在局限性。虽然最近3DGaussiansSpltting在小规模和以对象为中心的场景中效果很好,但由于视频内存有限、优化时间长、外观变化明显,将其扩展到大型场景
- Git进阶教程
麦秸垛的守望者
GitGit
文章目录写在前面版本回退查看版本回退操作git两种鉴权方式(sshhttp)git分支操作实际操作git冲突的产生与解决冲突的产生解决冲突忽略文件推荐几款GUI工具后文写在前面我们之前写过一篇git基础操作的文章,有人说写的太简单了,工作中很多用到的都没有写,那么今天我把剩下的git的一些基本操作也梳理了一下,分享给你们,鄙人能力有限,写的哪里不对的或者不严谨的,随时私信我,我及时更新。然后就是如
- DeepSeek大模型的发展的十问十答
科技互联人生
人工智能AIGCDeepseek
DeepSeek大模型是由杭州深度求索人工智能基础技术研究有限公司开发的一款基于Transformer架构的大型语言模型,具体介绍如下:1.架构基础Transformer架构:DeepSeek大模型基于Transformer架构,该架构由Google在2017年提出,以自注意力机制为核心,能够并行处理输入序列中的每个元素,从而大大提高模型的计算效率。DeepSeek在Transformer架构的基
- Docker--构建镜像
小李学不完
Docker容器技术eureka开发语言docker运维
一、基于容器生成镜像容器启动后是可写的,所有写操作都保存在顶部的可写层中。可以通过dockercommit命令将现有的容器进行提交来生成新的镜像。具体的实现原理是通过对可写层的修改生成新的镜像,因为联合文件系统所允许的层数是有限的,建议通过Dockerfile构建镜像。dockercommit命令用于从容器中创建一个新的镜像,其语法dockercommit[选项]容器[仓库[:标签]]-a选项指定
- 6种最新算法(小龙虾优化算法COA、螳螂搜索算法MSA、红尾鹰算法RTH、新雀优化算法NOA、鳑鲏鱼优化算法BFO、蜘蛛蜂优化算法SWO)求解机器人路径规划(提供MATLAB代码)
IT猿手
机器人路径规划优化算法无人机路径规划算法机器人matlab宽度优先开发语言人工智能前端
一、机器人路径规划介绍移动机器人(Mobilerobot,MR)的路径规划是移动机器人研究的重要分支之,是对其进行控制的基础。根据环境信息的已知程度不同,路径规划分为基于环境信息已知的全局路径规划和基于环境信息未知或局部已知的局部路径规划。随着科技的快速发展以及机器人的大量应用,人们对机器人的要求也越来越高,尤其表现在对机器人的智能化方面的要求,而机器人自主路径规划是实现机器人智能化的重要步骤,路
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s