- 不搞花里胡哨!CMU最新开源:极简风格的LiDAR全景分割+跟踪!
3D视觉工坊
3D视觉从入门到精通3D视觉
来源:3D视觉工坊在公众号「3D视觉工坊」后台,回复「原论文」可获取论文pdf、代码链接添加微信:dddvisiona,备注:三维点云,拉你入群。文末附行业细分群1.笔者个人体会激光雷达全景分割(LPS)一般遵循自下而上的以分割为中心的范式,利用聚类获得对象实例来建立语义分割网络。但是最近CMU&Meta等大佬们重新思考了这种方法,并提出了一个简单而有效的检测中心网络,用于LPS和跟踪。这项工作也
- Java直通车系列46【Spring Cloud】(服务监控与追踪Spring Cloud Sleuth 和 Zipkin)
浪九天
Java直通车javaspring开发语言后端springcloud
目录服务监控与追踪(SpringCloudSleuth和Zipkin)一、为什么需要服务监控与追踪?二、核心工具:SpringCloudSleuth+Zipkin三、场景示例:电商下单调用链追踪场景描述:使用Sleuth+Zipkin的追踪流程:四、高级功能与优化五、适用场景六、总结服务监控与追踪(SpringCloudSleuth和Zipkin)一、为什么需要服务监控与追踪?在微服务架构中,一个
- 无人机硬件技术研发突破方向与技术解析
yychen_java
无人机
无人机硬件技术研发突破方向与技术解析副标题:从仿生机翼到氢能动力系统的创新路径一、机翼设计优化1.仿生结构创新技术原理:模仿蜻蜓翅脉网格结构(图1),通过Cl=2Lρv2SC_l=\frac{2L}{\rhov^2S}Cl=ρv2S2L(升力系数公式)实现低雷诺数下的高效气动性能典型案例:北京航空航天大学研发的仿蝗虫折叠翼无人机,展开后翼展增加40%,抗风能力提升25%哈佛大学微型蜜蜂无人机采用高
- 【C++】——精细化哈希表架构:理论与实践的综合分析
m0_74825238
面试学习路线阿里巴巴c++散列表架构java
先找出你的能力在哪里,然后再决定你是谁。——塔拉·韦斯特弗《你当像鸟飞往你的山》目录1.C++与哈希表:核心概念与引入2.哈希表的底层机制:原理与挑战2.1核心功能解析:效率与灵活性的平衡2.2哈希冲突的本质:问题与应对策略2.3开散列与闭散列:两大解决方案的比较3.闭散列的精确实现:从设计到优化3.1整体框架设计:面向扩展的架构3.2仿函数的灵活性:高效哈希的关键3.3插入操作:冲突检测与位置分
- MyBatis-plus 2.x -> 3.x 版本升级笔记
三只松鼠@
工作日常springjavasql
参考链接:https://github.com/baomidou/mybatis-plus/issues/32621.官方更新日志升级JDK8+优化性能Wrapper支持lambda语法模块化MP合理的分配各个包结构移除com.baomidou.mybatisplus.extension.injector.methods.additional包下的过时类fix:初始化TableInfo中遇到多个字
- Android 和 Linux 之间关联和区别
测试也是会开发的
androidlinux运维
1.核心:基于Linux内核底层依赖:Android的核心系统服务(如进程管理、内存管理、硬件驱动等)依赖于Linux内核。Android使用Linux内核的修改版本(如AndroidCommonKernel),并针对移动设备的特性(电源管理、低内存优化等)进行了定制。开源协议:Linux内核采用GPL协议,因此Android对内核的修改必须开源(厂商发布的Android设备内核代码需公开)。2.
- Angular 动态加载组件与服务注入
t0_54program
编程问题解决手册angular.jsjavascriptecmascript个人开发
在Angular项目中,动态加载组件是一种常见的优化策略,特别是对于那些不常使用但体积庞大的组件。今天我们将探讨如何在Angular16+版本中使用MatDialog来动态加载组件,并解决与服务注入相关的问题。背景介绍假设我们有一个名为TestAComponent的组件,它需要在特定条件下打开一个对话框,显示一个名为TestBComponent的组件。由于TestBComponent非常大,并且使
- Python实战:开发经典猜拳游戏(石头剪刀布)
藍海琴泉
游戏
目录引言:为什么选择猜拳游戏作为入门项目?第一部分:基础知识点与代码实现1.游戏逻辑与流程2.代码分步实现2.1导入必要模块2.2定义游戏规则函数2.3生成计算机选择2.4判断胜负逻辑2.5主循环与交互3.代码运行效果示例第二部分:功能扩展与优化1.添加计分系统2.支持多轮游戏与退出选择3.增加图形化界面(可选)第三部分:进一步学习方向1.深化游戏功能2.学习相关知识3.书籍与资源推荐适合人群:编
- vue使用el-select下拉框匹配不到值的优化方案,el-select显示,当选择框的选项无法与选择框的value值匹配时,不显示value值的处理办法
Kingsaj
项目实操vue.jselementuijavascript
问题描述:新建表单数据,下拉框选项一般从接口获取的数据列表,比如后期某个数据关停了,这条数据就会被删除,导致我们取不到这条数据。就会出现el-select下拉框匹配不到值的情况。所以我们要处理这种情况的。复现步骤:数据字典新增一条【数据项】新添加一条工单数据绑定这个新增的【数据项】,提交保存操作。保存成功后,删除数据字典新增的【数据项】。然后点击当前新添加的工单数据编辑,操作,查看工单数据字典这一
- Matplotlib 柱形图
lly202406
开发语言
Matplotlib柱形图引言在数据可视化领域,柱形图是一种非常常见且强大的图表类型。它能够帮助我们直观地比较不同类别或组之间的数据大小。Matplotlib,作为Python中最受欢迎的数据可视化库之一,提供了丰富的绘图功能,其中包括创建柱形图。本文将详细介绍Matplotlib中的柱形图,包括其基本用法、高级特性以及如何进行优化。基本用法安装Matplotlib在开始使用Matplotlib之
- 蒙特卡罗树搜索算法依赖游戏树,也就是游戏的状态空间和可选动作的构成。游戏树是游戏设计者为了实现对战或博弈的目的
AI天才研究院
Python实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介20世纪末到21世纪初,计算机科学和互联网科技迅速发展。在这些新兴领域中,蒙特卡罗方法是一个显著的研究热点。蒙特卡罗方法源自物理学和数学领域,其目的是模拟物理系统的随机运动,从而解决很多数学、物理等领域的问题。蒙特卡loor方法被广泛应用于各类模拟、预测、优化、控制等领域。在计算机领域,蒙特卡罗方法也扮演了重要角色。现如今,计算性能已经足够强大,人们可以轻松地进
- HarmonyOS Next 企业级分布式办公应用实战:构建高效协同的办公新生态
lyc233333
harmonyos分布式华为
在数字化办公浪潮汹涌的当下,企业对于高效、便捷且协同性强的办公应用需求愈发迫切。华为鸿蒙HarmonyOSNext系统凭借其先进的分布式技术,为打造创新型企业级分布式办公应用提供了坚实的基础。本文将基于实际开发经验,深入剖析如何利用HarmonyOSNext构建企业级分布式办公应用,涵盖从需求分析到系统架构搭建,再到核心功能实现以及性能优化等关键环节。一、办公应用需求与系统架构搭建(一)企业级分布
- 如何评估一个RAG系统(RAGas评测框架)-下篇
写程序的小火箭
大语言模型人工智能语言模型chatgptlangchaingpt
RAGas是一个用于评测RAG系统的评测框架,它支持与不同大语言模型的集成,并与langchain生态打通,能够很方便的构建评测系统。下面是RAGas的一些链接论文:https://arxiv.org/pdf/2309.15217官方文档:Ragashttps://github.com/explodinggradients/ragas官方文档及github对框架的使用介绍的比较详细,本文不会就该方
- HarmonyOS Next--实现炫酷下拉刷新与上拉加载
harmonyos-next
摘要:本文通过HarmonyOS的PullToRefresh组件,结合Canvas绘图技术,实现具有动态小球特效的下拉刷新与上拉加载功能。文章将详细解析动画绘制原理、手势交互逻辑以及性能优化要点。一、效果预览实现功能包含:弹性下拉刷新:带有透明度渐变的圆形聚合动画波浪加载动画:三个小球按序弹跳的加载效果数据动态加载:模拟异步数据请求与列表更新流畅交互体验:支持列表惯性滑动与边缘回弹二、核心实现原理
- 大模型最新面试题系列:微调篇之微调基础知识
人肉推土机
大模型最新面试题集锦大全面试人工智能AI编程大模型微调LLM
一、全参数微调(Full-Finetune)vs参数高效微调(PEFT)对比1.显存使用差异全参数微调:需存储所有参数的梯度(如GPT-3175B模型全量微调需约2.3TB显存)PEFT:以LoRA为例,仅需存储低秩矩阵参数(7B模型使用r=16的LoRA时显存占用减少98%)实战经验:在A10080GB显存下,全量微调LLaMA-7B需DeepSpeedZero3优化,而LoRA可直接单卡运行2
- 计算机视觉技术探索:美颜SDK如何利用深度学习优化美颜、滤镜功能?
美狐美颜sdk
美颜SDK美颜API直播美颜SDK计算机视觉深度学习直播美颜SDK美颜sdk第三方美颜sdk美颜api
时下,计算机视觉+深度学习正在重塑美颜技术,通过智能人脸检测、AI滤镜、深度美肤、实时优化等方式,让美颜效果更加自然、精准、个性化。那么,美颜SDK如何结合深度学习来优化美颜和滤镜功能?本文将深入解析AI在美颜技术中的应用,并探讨其未来发展趋势。一、深度学习如何赋能美颜SDK?1.AI人脸检测与关键点识别:精准捕捉五官在美颜过程中,首先需要精准检测人脸位置和五官特征点,确保美颜效果不会失真。深度学
- 一篇文带你了解Go 1.24最新版本有趣的变化
磐基Stack专业服务团队
golangspring后端
#作者:曹付江文章目录前言1.语言特性更新1.1泛型类型别名:你的代码终于不再「绕口」了!2.工具链更新2.1引入tool指令,goget终于知道哪些是工具了2.2构建缓存优化,gorun变聪明了,不再瞎忙活2.3JSON输出改进,gobuild-json:构建日志终于能「看懂」了3.性能优化3.1运行时性能提升3.2cgo优化,cgo更快了,调用C代码更流畅3.3WebAssembly(Wasm
- GEO:在AI时代抢占DeepSeekC位?
白雪讲堂
人工智能
前言:当SEO遇见AGI——一场静默的流量革命在生成式AI日均处理53亿次查询的今天,传统SEO的「关键词-排名-点击」逻辑正在崩塌。DeepSeek、ChatGPT、豆包等大模型用动态生成的答案,悄然截流了68%的搜索需求。更残酷的是:当用户问"某个产品推荐"时,AI可能同时调用37个信源,却不会留下任何可追踪的搜索痕迹。这场革命迫使企业必须从「关键词优化」转向「场景占领」,从「流量争夺」进化到
- 每日一题--内存池
秋凉 づᐇ
java开发语言
内存池(MemoryPool)是一种高效的内存管理技术,通过预先分配并自主管理内存块,减少频繁申请/释放内存的系统开销,提升程序性能。它是高性能编程(如游戏引擎、数据库、网络服务器)中的核心优化手段。内存池的核心原理预先分配:初始化时一次性申请一大块内存(称为“池”),避免程序运行时频繁调用malloc/new。自主管理:将大块内存划分为多个固定或可变大小的内存单元,由程序自行分配和回收。复用机制
- 商品详情中除了价格和库存,还有哪些重要信息?
数据小爬虫@
大数据
在获取商品详情时,除了价格和库存,还有许多其他重要信息可以帮助我们更全面地了解商品。这些信息对于市场调研、数据分析、商品比较以及用户体验优化等都非常有价值。以下是一些常见的商品详情字段及其重要性:1.商品名称(Name)重要性:商品名称是用户识别商品的关键信息,也是搜索引擎优化(SEO)的重要部分。应用场景:用于展示商品、搜索优化、分类整理等。2.商品描述(Description)重要性:详细的商
- 使用OpenAI扩展AI文本生成功能:从基础到实际应用
vaidfl
人工智能python
技术背景介绍随着AI技术的不断发展,AI文本生成已经成为许多行业提升效率和创新的重要工具。OpenAI提供的API是一个强大的接口,可以帮助开发者轻松集成AI文本生成功能。本文将通过实际代码演示,指导大家实现并优化这种功能。核心原理解析OpenAI的文本生成基于GPT模型,其核心是生成与输入语境相关的内容。通过API请求,开发者可以发送文本,并由模型生成合理的续写,回答或者其他类型的文本输出。代码
- Linux驱动开发实战之SRIO驱动(二)基于Tsi721驱动
niuTaylor
SRIO驱动实战linux驱动开发运维SRIO
常用驱动介绍在RapidIO系统中,TSI721是一款常用的RapidIO交换芯片,其驱动程序和相关模块负责管理和优化数据传输,包括DMA(直接内存访问)操作。以下是您提到的各个模块的作用概述:rapidio.ko:这是RapidIO核心模块,为RapidIO子系统提供基础支持。它负责管理RapidIO设备、维护RapidIO网络拓扑结构,以及处理RapidIO协议的底层细节。rio_cm.ko:
- 深度学习模型性能全景评估与优化指南
niuTaylor
深度学习人工智能
深度学习模型性能全景评估与优化指南一、算力性能指标体系1.核心算力指标对比指标计算方式适用场景硬件限制TOPS(TeraOperationsPerSecond)每秒万亿次整数运算量化模型推理NVIDIAJetsonNano仅支持FP16/FP32TFLOPS(TeraFLoating-pointOPerationsperSecond)TFLOPS=Cores×FLOPs/Cycle×Frequen
- lingo使用笔记(仅入门)
发篇博客骗自己
笔记
lingo使用教程㈠,大致描述(平白无趣的科普)Lingo是一款用于线性规划、整数规划和非线性规划的优化软件。以下是一些常见的Lingo语法和写法的笔记,帮助你快速上手。1.基本结构Lingo模型通常由以下几个部分组成:集合定义:定义模型中使用的集合。数据输入:定义模型中的参数和数据。变量定义:定义决策变量。目标函数:定义优化目标。约束条件:定义模型的约束条件。求解命令:告诉Lingo进行求解。2
- 利用Python和深度学习方法实现手写数字识别的高精度解决方案——从数据预处理到模型优化的全流程解析
快撑死的鱼
Python算法精解python深度学习开发语言
利用Python和深度学习方法实现手写数字识别的高精度解决方案——从数据预处理到模型优化的全流程解析在人工智能的众多应用领域中,手写数字识别是一项经典且具有重要实际应用价值的任务。随着深度学习技术的飞速发展,通过构建和训练神经网络模型,手写数字识别的精度已经可以达到99%以上。本文将以Python为主要编程语言,结合深度学习的核心技术,详细解析手写数字识别的实现过程,并探讨如何进一步优化模型以提高
- 数学建模 第三节
一只自律的鸡
数学建模数学建模
目录前言一钻井布局问题第一问分析第二问分析总结前言这里讲述99年的钻井布局问题,利用这个问题讲述模型优化,LINGO,MATLAB的使用一钻井布局问题这个是钻井布局的原题,坐标的位置为a=[0.50,1.41,3.00,3.37,3.40,4.72,4.72,5.43,7.57,8.38,8.98,9.50];b=[2.00,3.50,1.50,3.51,5.50,2.00,6.24,4.10,2
- 书籍-《优化与最优控制简明教程》
优化深度学习人工智能算法
书籍:OptimizationandOptimalControlinaNutshell作者:SudathRohanMunasinghe出版:Springer编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《优化与最优控制简明教程》01书籍介绍本书简洁地介绍了优化过程和最优控制过程,并通过实例和仿真帮助自学和更好地理解。首先从函数优化和约束引入开始,随后扩展到使用变分法进行泛函优化。书中详细讲解
- HarmonyOS5开发:Ark-TS 深度解析:从状态管理到性能优化,揭秘鸿蒙开发的底层逻辑
harmonyos-next
Ark-TS作为鸿蒙生态的核心开发语言,其设计哲学和技术细节值得让我们一起深入挖掘以下下。这篇文章将会带您和我们一起聚焦Ark-TS的状态管理机制、类型系统优化及声明式UI的底层实现,通过代码示例和原理分析,带您揭开Ark-TS高效开发的神秘面纱。一、状态管理:Ark-TS的“神经中枢”在Ark-TS中,状态管理是驱动UI更新的核心机制。不同的状态装饰器(如@State、@Prop、@Link)各
- ip2region与express最佳实践
红衣大叔
nodejs帮助文档express
在使用ip2region进行IP地址定位并与Express框架集成时,最佳实践主要集中在如何高效地初始化Searcher实例、处理并发请求以及优化查询性能等方面。以下是一个基于ip2region和Express的示例项目结构和代码实现,帮助你快速上手。1.项目结构my-express-app/│├──node_modules/├──public/├──routes/│└──ip.js├──view
- 使用DeepEval进行LLM的单元测试
VYSAHF
单元测试log4jpython
在构建大语言模型(LLM)时,测试是确保模型行为和性能的关键步骤。ConfidentAI推出的DeepEval提供了一套完整的工具包,帮助开发者进行LLM的单元测试和集成测试。结合这些功能,你可以快速迭代,创建更健壮的语言模型。技术背景介绍DeepEval是ConfidentAI开发的一个包,用于语言模型的单元测试和集成测试。它的目标是让开发者能够通过合成数据创建、测试和优化模型,从而实现更高效的
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号