. 横震动
. 微小震动,既满足:
u ( x + Δ x , t ) − u ( x , t ) ≪ Δ x u(x+\Delta{x},t)-u(x,t)\ll\Delta{x} u(x+Δx,t)−u(x,t)≪Δx
. 弦是柔软的假设,即张力沿着切线方向
. 弦是均匀的假设,密度均匀为 ρ \rho ρ
通过上图,利用牛顿第二定律可得,沿着x方向和垂直方向受力平衡方程为:
{ T 2 cos α 2 − T 1 cos α 1 = 0 T 2 sin α 2 − T 1 sin α 1 + F d x = ρ d x ∂ 2 u ( x , t ) ∂ t 2 (1.1) \begin{cases} T_2\cos{\alpha_2}-T_1\cos{\alpha_1} = 0\\ T_2\sin\alpha_2-T_1\sin\alpha_1+F\mathrm{d}x=\rho\mathrm{d}x \displaystyle\frac{\partial^2{u(x,t)}}{\partial{t}^2} \end{cases}\tag{1.1} ⎩⎨⎧T2cosα2−T1cosα1=0T2sinα2−T1sinα1+Fdx=ρdx∂t2∂2u(x,t)(1.1)
下面利用四个假设条件进行化简上式。由于是微小震动,根据假设条件有:
u ( x + Δ x , t ) − u ( x , t ) ≪ Δ x ⇒ u ( x + Δ x , t ) − u ( x , t ) Δ x ≪ 1 ⇒ Δ x → 0 lim Δ x u ( x + Δ x , t ) − u ( x , t ) Δ x = ∂ u ( x , t ) ∂ x ≪ 1 (1.2) \begin{aligned} u(x+\Delta{x},t)-u(x,t)&\ll\Delta{x}\Rightarrow\\ \frac{u(x+\Delta{x},t)-u(x,t)}{\Delta{x}}&\ll1\stackrel{\Delta{x}\rightarrow 0}\Rightarrow\\ \lim_{\Delta x}\frac{u(x+\Delta{x},t)-u(x,t)}{\Delta{x}}&=\frac{\partial u(x,t)}{\partial x}\ll1 \end{aligned}\tag{1.2} u(x+Δx,t)−u(x,t)Δxu(x+Δx,t)−u(x,t)ΔxlimΔxu(x+Δx,t)−u(x,t)≪Δx⇒≪1⇒Δx→0=∂x∂u(x,t)≪1(1.2)
由于是微小横运动假设,则1.1式中三角函数有:
sin α 1 ≈ tan α 1 = u ( x + Δ x ) − u ( x , t ) Δ x ⇒ Δ x ⇒ 0 由 式 ( 1.2 ) tan α 1 = ∂ u ( x , t ) ∂ x (1.3) \begin{aligned} \sin \alpha_1 \approx\tan\alpha_1 &= \frac{u(x+\Delta x)-u(x,t)}{\Delta x}\stackrel{\Delta x\Rightarrow 0}{\Rightarrow}\\ 由式(1.2)\tan{\alpha_1}&=\frac{\partial u(x,t)}{\partial x} \end{aligned}\tag{1.3} sinα1≈tanα1由式(1.2)tanα1=Δxu(x+Δx)−u(x,t)⇒Δx⇒0=∂x∂u(x,t)(1.3)
sin α 2 ≈ tan α 2 = ∂ u ( x + d x , t ) ∂ x (1.4) \sin\alpha_2\approx\tan\alpha_2=\frac{\partial u(x+dx,t)}{\partial x}\tag{1.4} sinα2≈tanα2=∂x∂u(x+dx,t)(1.4)
cos α 1 = Δ x ( Δ x ) 2 + [ u ( x + Δ x ) − u ( x , t ) ] 2 = 1 1 + [ u ( x + Δ x , t ) − u ( x , t ) Δ x ] 2 由 式 ( 1.2 ) = 1 1 + [ ∂ u ( x , t ) ∂ x ] 2 ≈ 1 (1.5) \begin{aligned} \cos\alpha_1&=\frac{\Delta x}{\sqrt{(\Delta x)^2+[u(x+\Delta x)-u(x,t)]^2}}\\ &=\frac{1}{\sqrt{\displaystyle1+\left[\frac{u(x+\Delta x,t)-u(x,t)}{\Delta x}\right]^2}}\\ 由式(1.2)&=\frac{1}{\sqrt{\displaystyle 1+\left [\frac{\partial u(x,t)}{\partial x}\right]^2}}\approx1 \end{aligned}\tag{1.5} cosα1由式(1.2)=(Δx)2+[u(x+Δx)−u(x,t)]2Δx=1+[Δxu(x+Δx,t)−u(x,t)]21=1+[∂x∂u(x,t)]21≈1(1.5)
同理有:
cos α 2 = 1 1 + [ ∂ u ( x + d x , t ) ∂ x ] 2 ≈ 1 (1.6) \cos\alpha_2 = \frac{1}{\sqrt{\displaystyle1+\left[\frac{\partial u(x+dx,t)}{\partial x}\right]^2}}\approx1\tag{1.6} cosα2=1+[∂x∂u(x+dx,t)]21≈1(1.6)
综上所述,有:
{ sin α 1 ≈ tan α 1 = ∂ u ( x , t ) ∂ x sin α 2 ≈ tan α 2 = ∂ u ( x + d x , t ) ∂ x cos α 1 = 1 1 + [ ∂ u ( x , t ) ∂ x ] 2 ≈ 1 cos α 2 = 1 1 + [ ∂ u ( x + d x , t ) ∂ x ] 2 ≈ 1 (1.7) \begin{cases} \sin\alpha_1\approx\tan\alpha_1=\displaystyle\frac{\partial u(x,t)}{\partial x}\\ \sin\alpha_2\approx\tan\alpha_2=\displaystyle\frac{\partial u(x+dx,t)}{\partial x}\\ \cos\alpha_1=\frac{1}{\sqrt{\displaystyle 1+\left [\frac{\partial u(x,t)}{\partial x}\right]^2}}\approx1\\ \cos\alpha_2 = \frac{1}{\sqrt{\displaystyle 1+\left [\frac{\partial u(x+dx,t)}{\partial x}\right]^2}}\approx1 \end{cases}\tag{1.7} ⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧sinα1≈tanα1=∂x∂u(x,t)sinα2≈tanα2=∂x∂u(x+dx,t)cosα1=1+[∂x∂u(x,t)]21≈1cosα2=1+[∂x∂u(x+dx,t)]21≈1(1.7)
上式带入式(1.1)可得:
{ T 2 − T 1 = 0 T 2 ∂ u ( x + d x , t ) ∂ x − T 1 ∂ u ( x , t ) ∂ x + F ( x , t ) d x = ρ d x ∂ 2 u ( x , t ) ∂ t 2 (1.8) \begin{cases} T_2-T_1=0\\ T_2\displaystyle\frac{\partial{u(x+dx,t)}}{\partial x}-T_1\displaystyle\frac{\partial{u(x,t)}}{\partial{x}} +F(x,t)\mathrm{d}x=\rho \mathrm{d}x\frac{\partial^2{u(x,t)}}{\partial{t}^2} \end{cases}\tag{1.8} ⎩⎨⎧T2−T1=0T2∂x∂u(x+dx,t)−T1∂x∂u(x,t)+F(x,t)dx=ρdx∂t2∂2u(x,t)(1.8)
即:
T 2 = T 1 = T ⇓ T [ ∂ u ( x + d x , t ) ∂ x − ∂ u ( x , t ) ∂ x ] d x d x + F ( x , t ) d x = ρ d x ∂ 2 u ( x , t ) ∂ t 2 ⇒ T ∂ 2 u ( x , t ) ∂ x 2 + F ( x , t ) = ρ ∂ 2 u ( x , t ) ∂ t 2 令 : c 2 = T ρ , f ( x , t ) = F ( x , t ) ρ ⇓ ∂ 2 u ( x , t ) ∂ t 2 = c 2 ∂ 2 u ( x , t ) ∂ x 2 + f ( x , t ) (1.9) T_2=T_1=T\\ \Downarrow\\ \displaystyle T\frac{\displaystyle\left[\frac{\partial{u(x+dx,t)}}{\partial x}-\frac{\partial{u(x,t)}}{\partial x}\right]}{dx}dx+F(x,t)dx = \rho\mathrm{d}x\frac{\partial^2{u(x,t)}}{\partial{t}^2}\Rightarrow\\\quad\\ T\frac{\partial^2{u(x,t)}}{\partial{x}^2} +F(x,t)=\rho\frac{\partial^2{u(x,t)}}{\partial{t}^2}\\ \quad\\令:c^2=\frac{T}{\rho},f(x,t)=\frac{F(x,t)}{\rho}\\ \Downarrow\\ \frac{\partial^2{u(x,t)}}{\partial{t}^2}=c^2\frac{\partial^2{u(x,t)}}{\partial{x}^2}+f(x,t)\tag{1.9} T2=T1=T⇓Tdx[∂x∂u(x+dx,t)−∂x∂u(x,t)]dx+F(x,t)dx=ρdx∂t2∂2u(x,t)⇒T∂x2∂2u(x,t)+F(x,t)=ρ∂t2∂2u(x,t)令:c2=ρT,f(x,t)=ρF(x,t)⇓∂t2∂2u(x,t)=c2∂x2∂2u(x,t)+f(x,t)(1.9)
式(1.9)为非齐次一维波动方程,分析式中c的量纲:
c 2 = T ρ ⇒ n t k g ∖ m = k g ⋅ m \ s 2 k g \ m = ( m s ) 2 c^2 = \frac{T}{\rho} \Rightarrow \frac{nt}{kg\setminus m}=\frac{kg\cdot m\backslash s^2}{kg\backslash m}=(\frac{m}{s})^2 c2=ρT⇒kg∖mnt=kg\mkg⋅m\s2=(sm)2
由上式可见,c的量纲为速度,即物理意义是波速,其值为波场除以周期(时间):
c = λ \ T c=\lambda\backslash T c=λ\T
假设弦忽略重力 F ( x , t ) F(x,t) F(x,t)作用,则平衡方程(1.2)可写成:
{ T 2 cos α 2 − T 1 cos α 1 = 0 T 2 sin α 2 − T 1 sin α 1 = ρ Δ x ∂ 2 u ( x , t ) ∂ t 2 (1.10) \begin{cases} T_2\cos{\alpha_2}-T_1\cos{\alpha_1} = 0 \\ T_2\sin\alpha_2-T_1\sin\alpha_1=\rho\Delta x \displaystyle\frac{\partial^2{u(x,t)}}{\partial{t}^2} \tag{1.10} \end{cases} ⎩⎨⎧T2cosα2−T1cosα1=0T2sinα2−T1sinα1=ρΔx∂t2∂2u(x,t)(1.10)
上式第一个式子有:
T 2 cos α 2 = T 1 cos α 1 = T (1.11) T_2\cos\alpha_2 = T_1\cos\alpha_1=T \tag{1.11} T2cosα2=T1cosα1=T(1.11)
用式(1.11)的三项,分别除式(1.10)第二个式子的左右两端有:
T 2 sin α 2 T 2 cos α 2 − T 2 sin α 1 T 2 cos α 1 = ρ T ∂ 2 u ( x , t ) ∂ t 2 Δ x ⇒ tan α 2 − tan α 1 = ρ T ∂ 2 u ( x , t ) ∂ t 2 Δ x ∵ 式 ( 1.3 ) ⇓ [ ∂ u ( x + Δ x , t ) ∂ x − ∂ u ( x , t ) ∂ x ] Δ x = ρ T ∂ 2 u ( x , t ) ∂ t 2 上 式 两 部 当 Δ x → 时 取 极 限 ⇓ lim Δ x → 0 [ ∂ u ( x + Δ x , t ) ∂ x − ∂ u ( x , t ) ∂ x ] Δ x = lim Δ x ⇒ 0 ρ T ∂ 2 u ( x , t ) ∂ t 2 ⇒ ∂ 2 u ( x , t ) ∂ x 2 = 1 c 2 ∂ 2 u ( x , t ) ∂ t 2 ( c 2 = T ρ ) \frac{T_2\sin\alpha_2}{T_2\cos\alpha_2}-\frac{T_2\sin\alpha_1}{T_2\cos\alpha_1}=\frac{\rho}{T}\frac{\partial^2{u(x,t)}}{\partial t^2}\Delta x\Rightarrow\\\quad\\ \tan\alpha_2-\tan\alpha_1=\frac{\rho}{T}\frac{\partial^2{u(x,t)}}{\partial t^2}\Delta x\\\quad\\ \because式(1.3)\Downarrow\\\quad\\ \displaystyle \frac{\displaystyle\left[\frac{\partial{u(x+\Delta x,t)}}{\partial x}-\frac{\partial{u(x,t)}}{\partial x}\right]}{\Delta x}=\frac{\rho}{T}\frac{\partial^2{u(x,t)}}{\partial t^2}\\\quad\\ 上式两部当\Delta x \rightarrow时取极限\Downarrow\\\quad\\ \lim_{\Delta x\rightarrow 0}{\displaystyle \frac{\displaystyle\left[\frac{\partial{u(x+\Delta x,t)}}{\partial x}-\frac{\partial{u(x,t)}}{\partial x}\right]}{\Delta x}}=\lim_{\Delta x\Rightarrow0}{\frac{\rho}{T}\frac{\partial^2{u(x,t)}}{\partial t^2}}\Rightarrow\\\quad\\ \frac{\partial^2{u(x,t)}}{\partial{x}^2}=\frac{1}{c^2}\frac{\partial^2{u(x,t)}}{\partial{t}^2}\qquad(c^2=\frac{T}{\rho}) T2cosα2T2sinα2−T2cosα1T2sinα1=Tρ∂t2∂2u(x,t)Δx⇒tanα2−tanα1=Tρ∂t2∂2u(x,t)Δx∵式(1.3)⇓Δx[∂x∂u(x+Δx,t)−∂x∂u(x,t)]=Tρ∂t2∂2u(x,t)上式两部当Δx→时取极限⇓Δx→0limΔx[∂x∂u(x+Δx,t)−∂x∂u(x,t)]=Δx⇒0limTρ∂t2∂2u(x,t)⇒∂x2∂2u(x,t)=c21∂t2∂2u(x,t)(c2=ρT)