k-近邻算法采用测量不同特征值之间的距离方法进行分类。
工作原理:存在一个样本数据几何,也称作样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k-近邻算法中k的出处,通常k是不大于20的整数。最后,选择k个最相似数据中出现次数最多的分类,作为新数据的分类。
优点:精度高、对异常值不敏感、无数据输入假定
缺点:计算复杂度高、空间复杂度高
适用数据范围:数值型和标称型
kNN.py
"""
Created on Sep 16, 2010
kNN: k Nearest Neighbors
Input: inX: vector to compare to existing dataset (1xN)
dataSet: size m data set of known vectors (NxM)
labels: data set labels (1xM vector)
k: number of neighbors to use for comparison (should be an odd number)
Output: the most popular class label
@author: pbharrin
"""
from numpy import *
import operator
from os import listdir
def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0]
diffMat = tile(inX, (dataSetSize, 1)) - dataSet
sqDiffMat = diffMat ** 2
sqDistances = sqDiffMat.sum(axis=1)
distances = sqDistances ** 0.5
sortedDistIndicies = distances.argsort()
classCount = {}
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1
sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0]
def createDataSet():
group = array([[1.0, 1.1], [1.0, 1.0], [0, 0], [0, 0.1]])
labels = ['A', 'A', 'B', 'B']
return group, labels
def file2matrix(filename):
fr = open(filename)
numberOfLines = len(fr.readlines()) # get the number of lines in the file
returnMat = zeros((numberOfLines, 3)) # prepare matrix to return
classLabelVector = [] # prepare labels return
fr = open(filename)
index = 0
for line in fr.readlines():
line = line.strip()
listFromLine = line.split('\t')
returnMat[index, :] = listFromLine[0:3]
classLabelVector.append(int(listFromLine[-1]))
index += 1
return returnMat, classLabelVector
def autoNorm(dataSet):
minVals = dataSet.min(0)
maxVals = dataSet.max(0)
ranges = maxVals - minVals
normDataSet = zeros(shape(dataSet))
m = dataSet.shape[0]
normDataSet = dataSet - tile(minVals, (m, 1))
normDataSet = normDataSet / tile(ranges, (m, 1)) # element wise divide
return normDataSet, ranges, minVals
def datingClassTest():
hoRatio = 0.50 # hold out 10%
datingDataMat, datingLabels = file2matrix('datingTestSet2.txt') # load data setfrom file
normMat, ranges, minVals = autoNorm(datingDataMat)
m = normMat.shape[0]
numTestVecs = int(m * hoRatio)
errorCount = 0.0
for i in range(numTestVecs):
classifierResult = classify0(normMat[i, :], normMat[numTestVecs:m, :], datingLabels[numTestVecs:m], 3)
print("the classifier came back with: %d, the real answer is: %d" % (classifierResult, datingLabels[i]))
if classifierResult != datingLabels[i]: errorCount += 1.0
print("the total error rate is: %f" % (errorCount / float(numTestVecs)))
print(errorCount)
def classifyPerson():
resultList = ['not at all', 'in small doses', 'in large doses']
percentTats = float(input('percentage of time spent playing video games?'))
ffMiles = float(input('frequent flier miles earned per year?'))
iceCream = float(input('liters of ice cream consumed per year?'))
datingDataMat, datingLabels = file2matrix('datingTestSet2.txt')
normMat, ranges, minVals = autoNorm(datingDataMat)
inArr = array([ffMiles, percentTats, iceCream])
classifierResult = classify0((inArr-minVals)/ranges, normMat, datingLabels, 3)
print('You will probably like this person: ', resultList[classifierResult-1])
def img2vector(filename):
returnVect = zeros((1, 1024))
fr = open(filename)
for i in range(32):
lineStr = fr.readline()
for j in range(32):
returnVect[0, 32 * i + j] = int(lineStr[j])
return returnVect
def handwritingClassTest():
hwLabels = []
trainingFileList = listdir('trainingDigits') # load the training set
m = len(trainingFileList)
trainingMat = zeros((m, 1024))
for i in range(m):
fileNameStr = trainingFileList[i]
fileStr = fileNameStr.split('.')[0] # take off .txt
classNumStr = int(fileStr.split('_')[0])
hwLabels.append(classNumStr)
trainingMat[i, :] = img2vector('trainingDigits/%s' % fileNameStr)
testFileList = listdir('testDigits') # iterate through the test set
errorCount = 0.0
mTest = len(testFileList)
for i in range(mTest):
fileNameStr = testFileList[i]
fileStr = fileNameStr.split('.')[0] # take off .txt
classNumStr = int(fileStr.split('_')[0])
vectorUnderTest = img2vector('testDigits/%s' % fileNameStr)
classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)
print("the classifier came back with: %d, the real answer is: %d" % (classifierResult, classNumStr))
if (classifierResult != classNumStr): errorCount += 1.0
print("\nthe total number of errors is: %d" % errorCount)
print("\nthe total error rate is: %f" % (errorCount / float(mTest)))
'''
import kNN
from numpy import array
import matplotlib
import matplotlib.pyplot as plt
# 准备数据:从文本文件中解析数据
datingDataMat, datingLabels = kNN.file2matrix('datingTestSet2.txt')
print(datingDataMat)
print(datingLabels[0: 20])
# 分析数据:使用Matplotlib创建散点图
fig = plt.figure()
ax = fig.add_subplot(111)
# ax.scatter(datingDataMat[:, 1], datingDataMat[:, 2])
# plt.show()
ax.scatter(datingDataMat[:, 1], datingDataMat[:, 2], 15.0 * array(datingLabels), 15.0 * array(datingLabels))
plt.show()
# 准备数据:归一化数值
normMat, ranges, minVals = kNN.autoNorm(datingDataMat)
print(normMat)
print(ranges)
print(minVals)
# 测试算法:作为完整程序验证分类器
kNN.datingClassTest()
# 使用算法:构建完整可用系统
kNN.classifyPerson()
import kNN
# 准备数据:将图像转换为测试向量
testVector = kNN.img2vector('testDigits/0_13.txt')
print(testVector[0, 0:31])
# 测试算法:使用k-近邻算法识别手写数字
kNN.handwritingClassTest()
[1]哈林顿李锐. 机器学习实战 : Machine learning in action[M]. 人民邮电出版社, 2013.
[2]代码和数据来源:https://www.manning.com/books/machine-learning-in-action
注意:原代码是基于python2.x,在3.x的python中部分兼容问题需要调整