对抗攻击算法总结论文集合(白盒、黑盒、目标检测、对抗训练等)

文章目录

  • 前言
  • 对抗攻击名词解释
  • 一、白盒攻击
    • 1.FGSM
    • 2.JSMA:
    • 3.DeepFool:
    • 4.CW:
    • 5.PGD:
  • 二、黑盒攻击
    • 1.单像素攻击
    • 2.基于查询(query-based attack)
    • 3.基于迁移
    • 4.基于替代
    • 5.其他
  • 三、对抗攻击与目标检测
  • 四、对抗训练&鲁棒性

前言

只是一个自己看过的论文小汇总,还不能当综述,但也包含了很多经典的对抗攻击算法,方便回顾和查询,自己看的第一篇综述是:
Advances in adversarial attacks and defenses in computer vision: A survey
论文这件事,真的只能多看,上学期看的,现在忘差不多了(估计还得从头再看亿遍),代码也得操练起来。
由于我没给论文链接(比较费时间),我就介绍几个搜索文献的网站

  • Google Scholar(首推)
  • arxiv
  • x-mol
  • scopus
  • scihub
  • 百度学术(国内有时比上面几个好用)

代码就看论文中有没有给链接吧,然后就 paperswitchcode,基本上每一篇都有。后面有时间会编辑个论文和代码链接吧,然后简单介绍每种算法的idea和method,比较经典的应该会单出论文笔记。
算法的分类没有那么严格,可能会有一些出入,新看的论文会再加入,持续更新。

对抗攻击名词解释

术语 含义
white-box attack 白盒攻击:知道模型的全部信息
black-box attack 黑盒攻击:无法获知模型的训练过程和参数
query-based attack 基于查询的攻击:攻击者能够查询目标模型并利用其输出来优化对抗性图像
score-based attack 基于分数的攻击:需要知道模型的输出的置信度
decision-based attack 基于决策的攻击:只需要知道目标模型的预测标签(top-1 label)
targeted attacks 定向攻击,欺骗模型使模型预测为特定标签;相对于un-targeted attacks,没有特定标签,只求模型预测错误
adversarial training 对抗训练:在模型的训练数据中注入对抗性例子以使其具有对抗鲁棒性

首先:对抗攻击的最先提出:Intriguing properties of neural networks

一、白盒攻击

1.FGSM

(1)FGSM:EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES
(2)I-FGSM:ADVERSARIAL EXAMPLES IN THE PHYSICAL WORLD
(3)MI-FGSM:Boosting Adversarial Attacks with Momentum(白盒黑盒均适用)
(4)NI-FGSM,SIM:NESTEROV ACCELERATED GRADIENT AND SCALE INVARIANCE FOR ADVERSARIAL ATTACKS(增加迁移性)

2.JSMA:

The Limitations of Deep Learning in Adversarial Settings

3.DeepFool:

DeepFool: a simple and accurate method to fool deep neural networks

4.CW:

Towards Evaluating the Robustness of Neural Networks

5.PGD:

Towards Deep Learning Models Resistant to Adversarial Attacks

二、黑盒攻击

黑盒开篇:Practical Black-Box Attacks against Machine Learning

1.单像素攻击

(1)Simple Black-Box Adversarial Attacks on Deep Neural Networks
(2)One Pixel Attack for Fooling Deep Neural Networks

2.基于查询(query-based attack)

基于查询的又可分为基于分数的和基于决策的
socre-based attack
(1)SimBA:Simple Black-box Adversarial Attacks
(2)MetaSimulator:Simulating Unknown Target Models for Query-Efficient Black-box Attacks

decision-based attack
(1)开篇:Decision-Based Adversarial Attacks: Reliable Attacks Against Black-Box Machine learning Models
(2)HSJA:HopSkipJumpAttack: A Query-Efficient Decision-Based Attack
(3)SurFree:SurFree: a fast surrogate-free black-box attack
(4)f-attack:Decision-Based Adversarial Attack With Frequency Mixup

3.基于迁移

(1)开篇:Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples
(2)Delving into Transferable Adversarial Examples and Black-box Attacks
(3)Enhancing the Transferability of Adversarial Attacks through Variance Tuning
(3)元学习:Meta Gradient Adversarial Attack

4.基于替代

(1)DaST:Data-free Substitute Training for Adversarial Attacks
(2)Delving into Data: Effectively Substitute Training for Black-box Attack
(3)Learning Transferable Adversarial Examples via Ghost Networks

5.其他

(1)通用黑盒攻击UAP:Universal adversarial perturbations
(2)AdvDrop: Adversarial Attack to DNNs by Dropping Information
(3)Practical No-box Adversarial Attacks against DNNs
(4)ZOO: Zeroth Order Optimization Based Black-box Attacks to Deep Neural Networks without Training Substitute Models

三、对抗攻击与目标检测

  1. Towards Adversarially Robust Object Detection
  2. DPATCH: An Adversarial Patch Attack on Object Detectors

四、对抗训练&鲁棒性

  1. Towards Deep Learning Models Resistant to Adversarial Attacks
  2. A Closer Look at Accuracy vs. Robustness
  3. ENSEMBLE ADVERSARIAL TRAINING ATTACKS AND DEFENSES
  4. Towards Evaluating the Robustness of Neural Networks

你可能感兴趣的:(机器学习,人工智能)