python数据挖掘实战——KNN

KNN方法的简单描述:KNN方法用于分类,其基本思想如下。我们已经有一些已知类型的数据,暂称其为训练集。当一个新数据(暂称其为测试集)进入的时候,开始跟训练集数据中的每个数据点求距离,挑选与这个训练数据集中最近的K个点看这些点属于什么类型,用少数服从多数的方法将测试数据归类。

KNN实战案例

这里我们选取一个150*5的矩阵,分别代表三类数据。每行的前四个值代表数据的特征,第五个值代表数据的类别。具体代码与csv文件可访问GitHub地址
KNN案例地址
git clone到本地然后调试运行
git的常见操作见前文传送门
学会使用GitHub开源你的代码
部分数据展示如图:
python数据挖掘实战——KNN_第1张图片

加载数据

以split参数传来的参数为限,将小于split的随机数对应的数据划分到训练集,将大于split的随机数划分到测试集

    def loadDataset(self,filename, split, trainingSet, testSet):  # 加载数据集  split以某个值为界限分类train和test
        with open(filename, 'r') as csvfile:
            lines = csv.reader(csvfile)   #读取所有的行
            dataset = list(lines)     #转化成列表
            for x in range(len(dataset)-1):
                for y in range(4):
                    dataset[x][y] = float(dataset[x][y])
                if random.random() < split:   # 将所有数据加载到train和test中
                    trainingSet.append(dataset[x])
                else:
                    testSet.append(dataset[x])

对每个测试集中的数据进行迭代,取其临近点

计算测试集中每个点到训练集中每个点的距离,将这些距离按从小到大进行排序,取最近的k个点作为归类点

    def getNeighbors(self,trainingSet, testInstance, k):  # 返回最近的k个边距
        distances = []
        length = len(testInstance)-1
        for x in range(len(trainingSet)):   #对训练集的每一个数计算其到测试集的实际距离
            dist = self.calculateDistance(testInstance, trainingSet[x], length)
            print('{}--{}'.format(trainingSet[x], dist))
            distances.append((trainingSet[x], dist))
        distances.sort(key=operator.itemgetter(1))   # 把距离从小到大排列
        neighbors = []
        for x in range(k):   #排序完成后取前k个距离
            neighbors.append(distances[x][0])
            return neighbors

计算距离函数

length表示维度,这里数据是4维

    def calculateDistance(self,testdata, traindata, length):   # 计算距离
        distance = 0     # length表示维度 数据共有几维
        for x in range(length):
            distance += pow((testdata[x]-traindata[x]), 2)
        return math.sqrt(distance) 

判断那k个点所属的类别,选择出现频率最大的类标号作为测试集的类标号

    def getResponse(self,neighbors):  # 根据少数服从多数,决定归类到哪一类
        classVotes = {}
        for x in range(len(neighbors)):
            response = neighbors[x][-1]  # 统计每一个分类的多少
            if response in classVotes:
                classVotes[response] += 1
            else:
                classVotes[response] = 1
        print(classVotes.items())
        sortedVotes = sorted(classVotes.items(), key=operator.itemgetter(1), reverse=True) #reverse按降序的方式排列
        return sortedVotes[0][0]

全部code

import math
import csv
import random
import operator

class KNearestNeighbor(object):
    def __init__(self):
        pass

    def loadDataset(self,filename, split, trainingSet, testSet):  # 加载数据集  split以某个值为界限分类train和test
        with open(filename, 'r') as csvfile:
            lines = csv.reader(csvfile)   #读取所有的行
            dataset = list(lines)     #转化成列表
            for x in range(len(dataset)-1):
                for y in range(4):
                    dataset[x][y] = float(dataset[x][y])
                if random.random() < split:   # 将所有数据加载到train和test中
                    trainingSet.append(dataset[x])
                else:
                    testSet.append(dataset[x])


    def calculateDistance(self,testdata, traindata, length):   # 计算距离
        distance = 0     # length表示维度 数据共有几维
        for x in range(length):
            distance += pow((testdata[x]-traindata[x]), 2)
        return math.sqrt(distance)


    def getNeighbors(self,trainingSet, testInstance, k):  # 返回最近的k个边距
        distances = []
        length = len(testInstance)-1
        for x in range(len(trainingSet)):   #对训练集的每一个数计算其到测试集的实际距离
            dist = self.calculateDistance(testInstance, trainingSet[x], length)
            print('训练集:{}-距离:{}'.format(trainingSet[x], dist))
            distances.append((trainingSet[x], dist))
        distances.sort(key=operator.itemgetter(1))   # 把距离从小到大排列
        neighbors = []
        for x in range(k):   #排序完成后取前k个距离
            neighbors.append(distances[x][0])
            print(neighbors)
            return neighbors


    def getResponse(self,neighbors):  # 根据少数服从多数,决定归类到哪一类
        classVotes = {}
        for x in range(len(neighbors)):
            response = neighbors[x][-1]  # 统计每一个分类的多少
            if response in classVotes:
                classVotes[response] += 1
            else:
                classVotes[response] = 1
        print(classVotes.items())
        sortedVotes = sorted(classVotes.items(), key=operator.itemgetter(1), reverse=True) #reverse按降序的方式排列
        return sortedVotes[0][0]


    def getAccuracy(self,testSet, predictions):  # 准确率计算
        correct = 0
        for x in range(len(testSet)):
            if testSet[x][-1] == predictions[x]:   #predictions是预测的和testset实际的比对
                correct += 1
        print('共有{}个预测正确,共有{}个测试数据'.format(correct,len(testSet)))
        return (correct/float(len(testSet)))*100.0


    def Run(self):
        trainingSet = []
        testSet = []
        split = 0.75
        self.loadDataset(r'testdata.txt', split, trainingSet, testSet)   #数据划分
        print('Train set: ' + str(len(trainingSet)))
        print('Test set: ' + str(len(testSet)))
        #generate predictions
        predictions = []
        k = 3    # 取最近的3个数据
        # correct = []
        for x in range(len(testSet)):    # 对所有的测试集进行测试
            neighbors = self.getNeighbors(trainingSet, testSet[x], k)   #找到3个最近的邻居
            result = self.getResponse(neighbors)    # 找这3个邻居归类到哪一类
            predictions.append(result)
            # print('predictions: ' + repr(predictions))
            # print('>predicted=' + repr(result) + ', actual=' + repr(testSet[x][-1]))
        # print(correct)
        accuracy = self.getAccuracy(testSet,predictions)
        print('Accuracy: ' + repr(accuracy) + '%')


if __name__ == '__main__':
    a = KNearestNeighbor()
    a.Run()

运行效果部分展示:
python数据挖掘实战——KNN_第2张图片

你可能感兴趣的:(Python机器学习与深度学习,KNN)