- 周工作计划2019-03-25
MikeShine
很久没有写工作计划了。之前一个星期生了病,很难受。上个星期基本上什么都没有干。但是好的一点是,西瓜书基本都看完了。本周工作计划:机器学习分享活动(关于决策树的分享)回看一下西瓜书的东西,每一章把开头总结写一下。老师没有给具体的任务,留了再说吧。
- 机器学习(西瓜书)学习笔记导览
盛寒
机器学习西瓜书学习机器学习人工智能
本篇文章会持续更新直到更新完毕,关注博主不迷路~(如果没有超链接,表示还没有更新到)第一章绪论1.1引言1.2基本术语1.3假设空间1.4归纳偏好第二章模型评估与选择2.1经验误差与过拟合2.2评估方法2.3性能度量2.4比较检验2.5偏差与方差第三章线性模型3.1基本形式3.2线性回归3.3对数几率回归3.4线性判别分析3.5多分类学习3.6类别不平衡问题第四章决策树4.1基本流程4.2划分选择
- 机器学习LDA线性判别器代码实现
Longlongaaago
机器学习LDA线性判别分析代码实现
机器学习LDA线性判别器代码实现西瓜书P60线性判别器LDA代码实现:importnumpyasnpimportmatplotlib.pyplotaspltdefload_data(file_name):'''数据导入函数:paramfile_name:(string)训练数据位置:return:feature_data(mat)特征lable_data(mat)标签'''fr=open(file
- 西瓜书-机器学习5.4 全局最小与局部极小
lestat_black
西瓜书机器学习
两种“最优”:“局部极小”(localminimum)和"全局最小"(globalminimum)对和,若存在使得多组不同参数值初始化多个神经网络使用“模拟退火”:以一定的概率接受比当前解更差的结果,有助于“跳出”局部极小使用随机梯度下降遗传算法(geneticalgorithms)[Goldberg,1989]也常用来训练神经网络以上用于跳出局部极小的技术大多是启发式,理论上商缺乏保障。Gold
- 2019-05-14《西瓜书》难啃
杨熊猫Yang
周志华老师的《西瓜书:机器学习》这周看完1~10章锻炼:太极云手、100手/组,3组虎刨功(简)、100个/组,2组
- 机器学习——集成学习
三三木木七
机器学习集成学习人工智能
参考:ysu老师课件+西瓜书+期末复习笔记1.集成学习的基本概念集成学习(ensemblelearing)通过构建并结合多个学习器来完成学习任务。有时也被称为多分类器系统(multi-classifiersystem)、基于委员会的学习(committee-basedlearning)等。理解:集成学习是一种机器学习方法,其核心思想是将多个学习器(弱学习器)集成在一起,以达到比单个学习器更好的性能
- 西瓜书学习笔记——低维嵌入(公式推导+举例应用)
Nie同学
机器学习学习笔记机器学习
文章目录算法介绍实验分析算法介绍低维嵌入(Low-DimensionalEmbedding)是一种降低高维数据维度的技术,目的是在保留数据特征的同时减少数据的复杂性。这种技术常用于可视化、特征学习、以及数据压缩等领域。低维嵌入的目标是将高维数据映射到一个低维空间,以便更好地理解和可视化数据。在kkk近邻学习中,随着数据维度的增加,样本之间的距离变得更加稀疏,导致KNN算法性能下降。这是因为在高维空
- 西瓜书学习笔记——核化线性降维(公式推导+举例应用)
Nie同学
机器学习学习笔记机器学习
文章目录算法介绍实验分析算法介绍核化线性降维是一种使用核方法(KernelMethods)来进行降维的技术。在传统的线性降维方法中,例如主成分分析(PCA)和线性判别分析(LDA),数据被映射到一个低维线性子空间中。而核化线性降维则通过使用核技巧,将数据映射到一个非线性的低维空间中。核技巧的核心思想是通过一个非线性映射将原始数据转换到一个高维的特征空间,然后在该特征空间中应用线性降维方法。这种映射
- 西瓜书学习笔记——k近邻学习(公式推导+举例应用)
Nie同学
机器学习学习笔记机器学习
文章目录算法介绍实验分析算法介绍K最近邻(K-NearestNeighbors,KNN)是一种常用的监督学习算法,用于分类和回归任务。该算法基于一个简单的思想:如果一个样本在特征空间中的kkk个最近邻居中的大多数属于某个类别,那么该样本很可能属于这个类别。KNN算法不涉及模型的训练阶段,而是在预测时进行计算。以下是KNN算法的基本步骤:选择K值:首先,确定用于决策的邻居数量K。K的选择会影响算法的
- 西瓜书学习笔记——主成分分析(公式推导+举例应用)
Nie同学
机器学习学习笔记机器学习降维
文章目录算法介绍实验分析算法介绍主成分分析(PrincipalComponentAnalysis,PCA)是一种常用的降维技术,用于在高维数据中发现最重要的特征或主成分。PCA的目标是通过线性变换将原始数据转换成一组新的特征,这些新特征被称为主成分,它们是原始特征的线性组合。对于一个正交属性空间(各个属性之间是线性无关的)中的样本点,存在以下两个性质的超平面可对所有样本点进行恰当的表达:最近重构性
- 朴素贝叶斯分类算法
三三木木七
#机器学习机器学习人工智能sklearn
本文介绍了朴素贝叶斯分类算法,标记后的话一般是自己简要总结的,是比较通俗易懂的,也就是必看的。参考:西瓜书,ysu老师课件【摘要】1.分类算法:分类算法的内容是根据给定特征,求出它所属类别。2.先验概率:就是根据以往的数据分析所得到的概率。后验概率:是得到信息之后重新加以修正得到的概率。3.贝叶斯决策:贝叶斯决策理论中,我们希望选择那个最小化总体期望损失的决策。决策损失的期望值通过对所有可能状态的
- 决策树的相关知识点
三三木木七
#机器学习决策树算法机器学习
参考:ysu老师课件+西瓜书1.决策树的基本概念【决策树】:决策树是一种描述对样本数据进行分类的树形结构模型,由节点和有向边组成。其中每个内部节点表示一个属性上的判断,每个分支代表一个判断结果的输出,最后每个叶节点代表一种分类结果。理解:它是一个树状结构,其中每个节点代表一个特征属性的判断,每个分支代表这个判断的结果,而每个叶节点(叶子)代表一种类别或回归值。关于决策树要掌握的概念:根节点(Roo
- 西瓜书学习笔记——层次聚类(公式推导+举例应用)
Nie同学
机器学习学习笔记聚类
文章目录算法介绍实验分析算法介绍层次聚类是一种将数据集划分为层次结构的聚类方法。它主要有两种策略:自底向上和自顶向下。其中AGNES算法是一种自底向上聚类算法,用于将数据集划分为层次结构的聚类。算法的基本思想是从每个数据点开始,逐步合并最相似的簇,直到形成一个包含所有数据点的大簇。这个过程被反复执行,构建出一个层次化的聚类结构。这其中的关键就是如何计算聚类簇之间的距离。但实际上,每个簇都是一个集合
- 西瓜书学习笔记——密度聚类(公式推导+举例应用)
Nie同学
机器学习学习笔记聚类
文章目录算法介绍实验分析算法介绍密度聚类是一种无监督学习的聚类方法,其目标是根据数据点的密度分布将它们分组成不同的簇。与传统的基于距离的聚类方法(如K均值)不同,密度聚类方法不需要预先指定簇的数量,而是通过发现数据点周围的密度高度来确定簇的形状和大小。我们基于DBSCAN算法来实现密度聚类。DBSCAN是基于一组邻域参数(ϵ,MinPts)(\epsilon,MinPts)(ϵ,MinPts)来刻
- 【机器学习·西瓜书学习笔记·线性模型】线性回归——最小二乘法(least square method)
慈善区一姐
机器学习学习线性回归
线性模型的基本形式给定由个属性描述的实例,其中是在第个属性上的取值,线性模型(linearmodel)试图学得一个通过属性的线性组合来进行预测的函数,即一般用向量形式写成:和确定后,模型就得以确定参数查阅表把数据集表示为一个m*(d+1)大小的矩阵,其中每行对应于一个实例,每行前d个元素对应于实例的d个属性值,最后一个元素恒置于1,即(一)均方误差(meansquarederror)基于欧几里得距
- 如何系统学习机器学习?
人邮异步社区
学习机器学习人工智能
要系统学习机器学习,首先需要掌握一些基础编程技能,如Python。其次,学习基础的数学概念,如线性代数、概率论和统计学。然后,选择一些优质的在线课程和教材进行深入学习。最后,通过实践项目来巩固所学知识。以下是一些推荐的书籍:《动手学机器学习》,"西瓜书"作者周志华力荐的机器学习入门书。本书系统介绍了机器学习的基本内容及其代码实现,是一本着眼于机器学习教学实践的图书。本书包含4个部分:第一部分为机器
- 西瓜书学习笔记——原型聚类(公式推导+举例应用)
Nie同学
机器学习学习笔记聚类
文章目录k均值算法算法介绍实验分析学习向量量化(LVQ)算法介绍实验分析高斯混合聚类算法介绍实验分析总结k均值算法算法介绍给定样本集D={x1,x2,...,xm}D=\{x_1,x_2,...,x_m\}D={x1,x2,...,xm},k均值算法针对聚类算法所得簇划分C={C1,C2,...,Ck}\mathcal{C}=\{C_1,C_2,...,C_k\}C={C1,C2,...,Ck}最
- 大数据学习之路
金光闪闪耶
一、为什么要学习大数据?在我第一份实习的时候,忘记在什么场景下我leader突然说了一句:「干Java不就是增删改查嘛」,而恰好那时候知乎都是「干了3年Java,还是只会增删改查,迷茫」等问题,我听完leader那句话就心里一颤。因为这句话,我又一次的陷入迷茫,我不清楚自己是不是应该继续的Java,所以那段时间我干过爬虫,也撸了一阵子的西瓜书和统计学什么的。在知乎上所有相关的问题和答案我都看了,也
- 西瓜书学习笔记——Boosting(公式推导+举例应用)
Nie同学
机器学习学习笔记boosting
文章目录引言AdaBoost算法AdaBoost算法正确性说明AdaBoost算法如何解决权重更新问题?AdaBoost算法如何解决调整下一轮基学习器样本分布问题?AdaBoost算法总结实验分析引言Boosting是一种集成学习方法,旨在通过整合多个弱学习器来构建一个强学习器。其核心思想是迭代训练模型,关注之前被错误分类的样本,逐步提升整体性能。Boosting的代表算法包括AdaBoost、G
- 浙江大学《机器学习》笔记——神经网络(Neural Network)【上】
啵啵啵啵哲
机器学习笔记神经网络机器学习人工智能
写在前面·最近在学习《机器学习》.主要是看浙江大学胡浩基老师的网课,结合周志华老师的西瓜书来学.为了理清思路和推公式就敲了这样一个读书笔记.初次学习难免会有错漏,欢迎批评指正.这份笔记主要用途还是用来自己复习回顾.当然如果对大家有帮助那就更好了hhh·注:神经网络这部分的笔记大部分是基于浙大《机器学习》的逻辑进行整理的.第5章神经网络(NeuralNetwork)·神经网络的诞生是集体的智慧·近年
- 西瓜书读书笔记整理(十二) —— 第十二章 计算学习理论
smile-yan
机器学习西瓜书计算学习理论PAC
第十二章计算学习理论(上)12.1基础知识12.1.1什么是计算学习理论(computationallearningtheory)12.1.2什么是独立同分布(independentandidenticallydistributed,简称i.i.d.i.i.d.i.i.d.)以及独立同分布样本12.1.3泛化误差以及经验误差12.1.4相关数学定义表示12.1.5误差参数12.1.6映射与样本集是
- python自学(二)第二章 正则表达式|字符串匹配、函数和面向对象程序设计
BrilandLiu
pythonpython编程语言
为了能在开学后更好地融入实验室,本人计划用一个月的时间进行python3语言入门,该系列笔记适合已经有一门编程语言基础的朋友参考使用,欢迎同道者前来交流~使用教材:1.《python从入门到精通》清华大学出版社;(自带教学视频【二维码形式】)least17p/d2.《机器学习》周志华(西瓜书)清华大学出版社;least14p/d;3.BiliBili《和美女老师一起学python》视频。(一)正则
- 【机器学习】西瓜书要点个人整理
_hermit:
机器学习机器学习人工智能学习
目录前置基础知识第三章线性模型机器学习三要素1.函数集合2.目标函数3.优化方法4.模型评估方法对数几率回归(逻辑回归)第四章决策树第五章SVM第六章贝叶斯分类器第八章集成学习第九章神经网络前情提要:本文适合在学习机器学习课程前,对课程的要点进行简单预习。本文中提到的一些概念,大多是老师课上会重点讲的、考试要考的。此外,在进行复习时也可以通过这些概念引入,从而去更深入理解一些模型原理。前置基础知识
- 吃瓜教程Task1:概览西瓜书+南瓜书第1、2章
卡拉比丘流形
机器学习机器学习人工智能
由于本人之前已经学习过西瓜书,本次学习主要是对以往知识的查漏补缺,因此本博客记录了在学习西瓜书中容易混淆的点以及学习过程中的难点。更多学习内容可以参考下面的链接:南瓜书的地址:https://github.com/datawhalechina/pumpkin-book【视频链接】https://www.bilibili.com/video/BV1Mh411e7VU?p=1文章目录绪论如何对机器学习
- 西瓜书读书笔记整理(十) —— 第十章降维与度量学习
smile-yan
机器学习西瓜书
10.1k近邻学习10.1.1什么是kNN学习kNN算法(k-NearestNeighbors)是一种常用的分类和回归算法。它的基本思想是根据最近邻的样本来预测未知样本的标签或值。10.1.2kNN算法步骤kNN算法的步骤如下:计算未知样本与训练集中所有样本的距离(通常使用欧氏距离或其他距离度量方法)。选取与未知样本距离最近的k个样本。对于分类问题,根据这k个样本的标签进行投票或权重计算,确定未知
- 西瓜书第六章课后习题
lammmya
6.1试证明样本空间中任意点x到超平面(w,b)的距离为式(6.2)。画了个图在纸上进行了证明,感觉这样自会通俗易懂些。6.2试使用LIBSVM,在西瓜数据集3.0α上分别用线性核和高斯核训练一个SVM,并比较其支持向量的差别。导入相应的包主体函数:设置参数,输出。数据特征可视化输出结果以及数据特征可视化最终结果如下图结果表明,使用线性核和高斯训练核的支持向量实际是一样的(两条线重合),且数量相同
- 机器学习西瓜书笔记1
糊了胡
机器学习机器学习笔记人工智能
第一章机器学习之绪论目录第一章机器学习之绪论一、引言二、基本术语三、假设空间四、归纳偏好五、发展历程一、引言机器学习就是致力于研究如何通过计算的手段,利用经验来改善系统自身的性能。Mitchell给出了更形式化的定义:假设用P来评估计算机程序在某任务类T上的性能,若一个程序通过利用经验E在T中任务上获得了性能改善,则我们就说关于T和P,该程序对E进行了学习。二、基本术语收集一组西瓜数据,(色泽=青
- 西瓜书读书笔记整理(九) —— 第九章 聚类
smile-yan
聚类支持向量机机器学习
第九章聚类9.1聚类算法概述9.1.1什么是聚类算法9.1.2聚类算法分类9.1.3聚类任务9.2性能度量(ClusterEvaluation)9.2.1外部指标(externalindex)9.2.2内部指数(internalindex)9.3距离度量(DistanceMeasures)9.3.1距离度量的性质9.3.2常见的几种距离的计算公式9.4原型聚类(prototype-basedclu
- 西瓜书*南瓜书*机器学习*周志华*第一章*学习小结
fyc300
笔记西瓜书机器学习机器学习人工智能自动驾驶
西瓜书*南瓜书*机器学习*周志华*第一章*学习小结第一章绪论1.1绪论通过一个关于瓜的故事引入了对于机器学习这门课的学习。机器学习正是这样一门学科,它致力于研究如何通过计算的手段,利用经验来改善系统自身的性能。1.2基本术语数据集dataset示例instance样本sample属性attribute特征feature属性值attributevalue属性空间attributespace样本空间s
- 【机器学习】集成学习基础概念介绍
Avasla
机器学习算法机器学习集成学习人工智能
前言本文根据西瓜书总结了一些关键知识点,介绍了集成学习的原理、类型以及结合策略。、1.个体与集成集成学习(ensemblelearning)通过构建的并结合多个学习器来完成学习任务,有时也被成为多分类器系统(multi-classifiersystem)、基于委员会的学习(committee-basedlearning)等。……通过将多个学习器进行结合,常可获得比单一学习器显著优越的泛化性能。个体
- 强大的销售团队背后 竟然是大数据分析的身影
蓝儿唯美
数据分析
Mark Roberge是HubSpot的首席财务官,在招聘销售职位时使用了大量数据分析。但是科技并没有挤走直觉。
大家都知道数理学家实际上已经渗透到了各行各业。这些热衷数据的人们通过处理数据理解商业流程的各个方面,以重组弱点,增强优势。
Mark Roberge是美国HubSpot公司的首席财务官,HubSpot公司在构架集客营销现象方面出过一份力——因此他也是一位数理学家。他使用数据分析
- Haproxy+Keepalived高可用双机单活
bylijinnan
负载均衡keepalivedhaproxy高可用
我们的应用MyApp不支持集群,但要求双机单活(两台机器:master和slave):
1.正常情况下,只有master启动MyApp并提供服务
2.当master发生故障时,slave自动启动本机的MyApp,同时虚拟IP漂移至slave,保持对外提供服务的IP和端口不变
F5据说也能满足上面的需求,但F5的通常用法都是双机双活,单活的话还没研究过
服务器资源
10.7
- eclipse编辑器中文乱码问题解决
0624chenhong
eclipse乱码
使用Eclipse编辑文件经常出现中文乱码或者文件中有中文不能保存的问题,Eclipse提供了灵活的设置文件编码格式的选项,我们可以通过设置编码 格式解决乱码问题。在Eclipse可以从几个层面设置编码格式:Workspace、Project、Content Type、File
本文以Eclipse 3.3(英文)为例加以说明:
1. 设置Workspace的编码格式:
Windows-&g
- 基础篇--resources资源
不懂事的小屁孩
android
最近一直在做java开发,偶尔敲点android代码,突然发现有些基础给忘记了,今天用半天时间温顾一下resources的资源。
String.xml 字符串资源 涉及国际化问题
http://www.2cto.com/kf/201302/190394.html
string-array
- 接上篇补上window平台自动上传证书文件的批处理问卷
酷的飞上天空
window
@echo off
: host=服务器证书域名或ip,需要和部署时服务器的域名或ip一致 ou=公司名称, o=公司名称
set host=localhost
set ou=localhost
set o=localhost
set password=123456
set validity=3650
set salias=s
- 企业物联网大潮涌动:如何做好准备?
蓝儿唯美
企业
物联网的可能性也许是无限的。要找出架构师可以做好准备的领域然后利用日益连接的世界。
尽管物联网(IoT)还很新,企业架构师现在也应该为一个连接更加紧密的未来做好计划,而不是跟上闸门被打开后的集成挑战。“问题不在于物联网正在进入哪些领域,而是哪些地方物联网没有在企业推进,” Gartner研究总监Mike Walker说。
Gartner预测到2020年物联网设备安装量将达260亿,这些设备在全
- spring学习——数据库(mybatis持久化框架配置)
a-john
mybatis
Spring提供了一组数据访问框架,集成了多种数据访问技术。无论是JDBC,iBATIS(mybatis)还是Hibernate,Spring都能够帮助消除持久化代码中单调枯燥的数据访问逻辑。可以依赖Spring来处理底层的数据访问。
mybatis是一种Spring持久化框架,要使用mybatis,就要做好相应的配置:
1,配置数据源。有很多数据源可以选择,如:DBCP,JDBC,aliba
- Java静态代理、动态代理实例
aijuans
Java静态代理
采用Java代理模式,代理类通过调用委托类对象的方法,来提供特定的服务。委托类需要实现一个业务接口,代理类返回委托类的实例接口对象。
按照代理类的创建时期,可以分为:静态代理和动态代理。
所谓静态代理: 指程序员创建好代理类,编译时直接生成代理类的字节码文件。
所谓动态代理: 在程序运行时,通过反射机制动态生成代理类。
一、静态代理类实例:
1、Serivce.ja
- Struts1与Struts2的12点区别
asia007
Struts1与Struts2
1) 在Action实现类方面的对比:Struts 1要求Action类继承一个抽象基类;Struts 1的一个具体问题是使用抽象类编程而不是接口。Struts 2 Action类可以实现一个Action接口,也可以实现其他接口,使可选和定制的服务成为可能。Struts 2提供一个ActionSupport基类去实现常用的接口。即使Action接口不是必须实现的,只有一个包含execute方法的P
- 初学者要多看看帮助文档 不要用js来写Jquery的代码
百合不是茶
jqueryjs
解析json数据的时候需要将解析的数据写到文本框中, 出现了用js来写Jquery代码的问题;
1, JQuery的赋值 有问题
代码如下: data.username 表示的是: 网易
$("#use
- 经理怎么和员工搞好关系和信任
bijian1013
团队项目管理管理
产品经理应该有坚实的专业基础,这里的基础包括产品方向和产品策略的把握,包括设计,也包括对技术的理解和见识,对运营和市场的敏感,以及良好的沟通和协作能力。换言之,既然是产品经理,整个产品的方方面面都应该能摸得出门道。这也不懂那也不懂,如何让人信服?如何让自己懂?就是不断学习,不仅仅从书本中,更从平时和各种角色的沟通
- 如何为rich:tree不同类型节点设置右键菜单
sunjing
contextMenutreeRichfaces
组合使用target和targetSelector就可以啦,如下: <rich:tree id="ruleTree" value="#{treeAction.ruleTree}" var="node" nodeType="#{node.type}"
selectionChangeListener=&qu
- 【Redis二】Redis2.8.17搭建主从复制环境
bit1129
redis
开始使用Redis2.8.17
Redis第一篇在Redis2.4.5上搭建主从复制环境,对它的主从复制的工作机制,真正的惊呆了。不知道Redis2.8.17的主从复制机制是怎样的,Redis到了2.4.5这个版本,主从复制还做成那样,Impossible is nothing! 本篇把主从复制环境再搭一遍看看效果,这次在Unbuntu上用官方支持的版本。 Ubuntu上安装Red
- JSONObject转换JSON--将Date转换为指定格式
白糖_
JSONObject
项目中,经常会用JSONObject插件将JavaBean或List<JavaBean>转换为JSON格式的字符串,而JavaBean的属性有时候会有java.util.Date这个类型的时间对象,这时JSONObject默认会将Date属性转换成这样的格式:
{"nanos":0,"time":-27076233600000,
- JavaScript语言精粹读书笔记
braveCS
JavaScript
【经典用法】:
//①定义新方法
Function .prototype.method=function(name, func){
this.prototype[name]=func;
return this;
}
//②给Object增加一个create方法,这个方法创建一个使用原对
- 编程之美-找符合条件的整数 用字符串来表示大整数避免溢出
bylijinnan
编程之美
import java.util.LinkedList;
public class FindInteger {
/**
* 编程之美 找符合条件的整数 用字符串来表示大整数避免溢出
* 题目:任意给定一个正整数N,求一个最小的正整数M(M>1),使得N*M的十进制表示形式里只含有1和0
*
* 假设当前正在搜索由0,1组成的K位十进制数
- 读书笔记
chengxuyuancsdn
读书笔记
1、Struts访问资源
2、把静态参数传递给一个动作
3、<result>type属性
4、s:iterator、s:if c:forEach
5、StringBuilder和StringBuffer
6、spring配置拦截器
1、访问资源
(1)通过ServletActionContext对象和实现ServletContextAware,ServletReque
- [通讯与电力]光网城市建设的一些问题
comsci
问题
信号防护的问题,前面已经说过了,这里要说光网交换机与市电保障的关系
我们过去用的ADSL线路,因为是电话线,在小区和街道电力中断的情况下,只要在家里用笔记本电脑+蓄电池,连接ADSL,同样可以上网........
 
- oracle 空间RESUMABLE
daizj
oracle空间不足RESUMABLE错误挂起
空间RESUMABLE操作 转
Oracle从9i开始引入这个功能,当出现空间不足等相关的错误时,Oracle可以不是马上返回错误信息,并回滚当前的操作,而是将操作挂起,直到挂起时间超过RESUMABLE TIMEOUT,或者空间不足的错误被解决。
这一篇简单介绍空间RESUMABLE的例子。
第一次碰到这个特性是在一次安装9i数据库的过程中,在利用D
- 重构第一次写的线程池
dieslrae
线程池 python
最近没有什么学习欲望,修改之前的线程池的计划一直搁置,这几天比较闲,还是做了一次重构,由之前的2个类拆分为现在的4个类.
1、首先是工作线程类:TaskThread,此类为一个工作线程,用于完成一个工作任务,提供等待(wait),继续(proceed),绑定任务(bindTask)等方法
#!/usr/bin/env python
# -*- coding:utf8 -*-
- C语言学习六指针
dcj3sjt126com
c
初识指针,简单示例程序:
/*
指针就是地址,地址就是指针
地址就是内存单元的编号
指针变量是存放地址的变量
指针和指针变量是两个不同的概念
但是要注意: 通常我们叙述时会把指针变量简称为指针,实际它们含义并不一样
*/
# include <stdio.h>
int main(void)
{
int * p; // p是变量的名字, int *
- yii2 beforeSave afterSave beforeDelete
dcj3sjt126com
delete
public function afterSave($insert, $changedAttributes)
{
parent::afterSave($insert, $changedAttributes);
if($insert) {
//这里是新增数据
} else {
//这里是更新数据
}
}
 
- timertask
shuizhaosi888
timertask
java.util.Timer timer = new java.util.Timer(true);
// true 说明这个timer以daemon方式运行(优先级低,
// 程序结束timer也自动结束),注意,javax.swing
// 包中也有一个Timer类,如果import中用到swing包,
// 要注意名字的冲突。
TimerTask task = new
- Spring Security(13)——session管理
234390216
sessionSpring Security攻击保护超时
session管理
目录
1.1 检测session超时
1.2 concurrency-control
1.3 session 固定攻击保护
 
- 公司项目NODEJS实践0.3[ mongo / session ...]
逐行分析JS源代码
mongodbsessionnodejs
http://www.upopen.cn
一、前言
书接上回,我们搭建了WEB服务端路由、模板等功能,完成了register 通过ajax与后端的通信,今天主要完成数据与mongodb的存取,实现注册 / 登录 /
- pojo.vo.po.domain区别
LiaoJuncai
javaVOPOJOjavabeandomain
POJO = "Plain Old Java Object",是MartinFowler等发明的一个术语,用来表示普通的Java对象,不是JavaBean, EntityBean 或者 SessionBean。POJO不但当任何特殊的角色,也不实现任何特殊的Java框架的接口如,EJB, JDBC等等。
即POJO是一个简单的普通的Java对象,它包含业务逻辑
- Windows Error Code
OhMyCC
windows
0 操作成功完成.
1 功能错误.
2 系统找不到指定的文件.
3 系统找不到指定的路径.
4 系统无法打开文件.
5 拒绝访问.
6 句柄无效.
7 存储控制块被损坏.
8 存储空间不足, 无法处理此命令.
9 存储控制块地址无效.
10 环境错误.
11 试图加载格式错误的程序.
12 访问码无效.
13 数据无效.
14 存储器不足, 无法完成此操作.
15 系
- 在storm集群环境下发布Topology
roadrunners
集群stormtopologyspoutbolt
storm的topology设计和开发就略过了。本章主要来说说如何在storm的集群环境中,通过storm的管理命令来发布和管理集群中的topology。
1、打包
打包插件是使用maven提供的maven-shade-plugin,详细见maven-shade-plugin。
<plugin>
<groupId>org.apache.maven.
- 为什么不允许代码里出现“魔数”
tomcat_oracle
java
在一个新项目中,我最先做的事情之一,就是建立使用诸如Checkstyle和Findbugs之类工具的准则。目的是制定一些代码规范,以及避免通过静态代码分析就能够检测到的bug。 迟早会有人给出案例说这样太离谱了。其中的一个案例是Checkstyle的魔数检查。它会对任何没有定义常量就使用的数字字面量给出警告,除了-1、0、1和2。 很多开发者在这个检查方面都有问题,这可以从结果
- zoj 3511 Cake Robbery(线段树)
阿尔萨斯
线段树
题目链接:zoj 3511 Cake Robbery
题目大意:就是有一个N边形的蛋糕,切M刀,从中挑选一块边数最多的,保证没有两条边重叠。
解题思路:有多少个顶点即为有多少条边,所以直接按照切刀切掉点的个数排序,然后用线段树维护剩下的还有哪些点。
#include <cstdio>
#include <cstring>
#include <vector&