- 【图像超分】论文复现:密集残差链接Transformer!DRCT的Pytorch源码复现,跑通超分源码,获得指标、模型复杂度、结果可视化,核心模块拆解与源码对应,注释详细!
十小大
超分辨率重建(理论+实战科研+应用)pytorch深度学习超分辨率重建图像处理计算机视觉pythontransformer
请先看【专栏介绍文章】:【超分辨率(Super-Resolution)】关于【超分辨率重建】专栏的相关说明,包含专栏简介、专栏亮点、适配人群、相关说明、阅读顺序、超分理解、实现流程、研究方向、论文代码数据集汇总等)完整代码和训练好的模型权重文件下载链接见本文底部,订阅专栏免费获取!本文亮点:跑通DRCT源码,获得与论文一致的PSNR/SSIM、Params、超分可视化结果,修正论文中FLOPs的计
- 【Torch】nn.Embedding算法详解
油泼辣子多加
深度学习embedding算法
1.定义nn.Embedding是PyTorch中的查表式嵌入层(lookup‐table),用于将离散的整数索引(如词ID、实体ID、离散特征类别等)映射到一个连续的、可训练的低维向量空间。它通过维护一个形状为(num_embeddings,embedding_dim)的权重矩阵,实现高效的“索引→向量”转换。2.输入与输出输入类型:整型张量(torch.long或torch.int64),必须
- 【pytorch】——Could not export Python function call ‘Scatter‘
pytorch用pytorch的trace导出模型的时候,报错errorRuntimeError:CouldnotexportPythonfunctioncall'Scatter'.RemovecallstoPythonfunctionsbeforeexport.Didyouforgettoadd@scriptor@script_methodannotation?Ifthisisann.Modul
- Pytorch实现DenseNet,腾讯T3大牛手把手教你
print("TorchvisionVersion:",torchvision.version)all=[‘DenseNet121’,‘DenseNet169’,‘DenseNet201’,‘DenseNet264’]defConv1(in_planes,places,stride=2):returnnn.Sequential(nn.Conv2d(in_channels=in_planes,out
- Pytorch实现DenseNet,先收藏了
classDenseNet(nn.Module):definit(self,init_channels=64,growth_rate=32,blocks=[6,12,24,16],num_classes=1000):super(DenseNet,self).init()bn_size=4drop_rate=0self.conv1=Conv1(in_planes=3,places=init_chan
- Pytorch 之torch.nn初探 torch.nn.Module与线性--Linear layers
十有久诚
人工智能机器学习pytorch
初探torch.nn.Module神经网络可以使用torch.nn包构建。它提供了几乎所有与神经网络相关的功能,例如:线性图层nn.Linear,nn.Bilinear卷积层nn.Conv1d,nn.Conv2d,nn.Conv3d,nn.ConvTranspose2d非线性nn.Sigmoid,nn.Tanh,nn.ReLU,nn.LeakyReLU池化层nn.MaxPool1d,nn.Aver
- 深入解析VAE:从理论到PyTorch实战,一步步构建你的AI“艺术家”
电脑能手
人工智能深度学习python
摘要:你是否好奇AI如何“凭空”创造出从未见过的人脸或画作?变分自编码器(VAE)就是解开这一谜题的关键钥匙之一。本文将带你从零开始,深入浅出地剖析VAE的迷人世界。我们将用生动的比喻解释其核心思想,拆解其背后的数学原理(KL散度与重参数技巧),并最终用PyTorch代码手把手地构建、训练和可视化一个完整的VAE模型。无论你是初学者还是有一定经验的开发者,相信这篇文章都能让你对生成模型有一个全新的
- PyTorch实战:从零构建CNN模型,轻松搞定MNIST手写数字识别
PyTorch实战:从零构建CNN模型,轻松搞定MNIST手写数字识别大家好!欢迎来到我的深度学习博客!对于每个踏入计算机视觉领域的人来说,MNIST手写数字识别就像是编程世界的“Hello,World!”。它足够简单,能够让我们快速上手;也足够完整,可以帮我们走通一个深度学习项目的全流程。之前我们可能用Keras体验过“搭积木”式的快乐,今天,我们将换一个同样强大且灵活的框架——PyTorch,
- Pytorch:nn.Linear中是否自动应用softmax函数
浩瀚之水_csdn
深度学习目标检测#Pytorch框架pytorch人工智能python
在本文中,我们将介绍Pytorch中的nn.Linear模块以及它是否自动应用softmax函数。nn.Linear是Pytorch中用于定义线性转换的模块,常用于神经网络的全连接层。一、什么是nn.Linearnn.Linear是PyTorch中的一个类,它是实现线性变换的模块。nn.Linear的主要作用是将输入张量和权重矩阵相乘,再添加偏置,生成输出张量。我们来看一个简单的示例,展示如何使用
- 【Pytorch学习笔记(三)】张量的运算(2)
一、引言在《张量的运算(1)》中我们已经学习了几种张量中常用的非算数运算如张量的索引与切片,张量的拼接等。本节我们继续学习张量的算术运算。二、张量的算术运算(一)对应元素的加减乘除在PyTorch中,张量的对应元素的算术运算包括加法、减法、乘法、除法等常见的数学运算。这些运算可以对张量进行逐元素操作(element-wise),也可以进行张量之间的广播运算(broadcasting)。1.逐元素操
- 【零基础学AI】第22讲:PyTorch入门 - 动态图计算与图像分类器实战
1989
0基础学AI人工智能pytorchpython机器学习sklearn深度学习
本节课你将学到理解PyTorch的核心概念和优势掌握张量(Tensor)的基本操作学会使用动态计算图构建神经网络实现一个完整的图像分类器项目训练模型并进行预测开始之前环境要求Python3.8+建议使用GPU(可选,CPU也能运行)内存:至少4GB需要安装的包#CPU版本(推荐新手)pipinstalltorchtorchvisionmatplotlibpillow#GPU版本(如果有NVIDIA
- YOLO 推理部署全方案」:一文掌握部署方式与性能对比!
要努力啊啊啊
计算机视觉YOLO目标跟踪计算机视觉目标检测人工智能
YOLO的推理部署方法全景指南YOLO系列模型经过训练后,通常需要部署到线上环境中进行推理(inference)。下面是常见的YOLO推理部署方式:1️⃣PyTorch原生部署使用原始PyTorch模型.pt文件直接调用model(input)进行推理✅优点:简单、灵活、易于调试❌缺点:推理速度较慢,不适合生产环境2️⃣ONNX导出+推理将YOLO模型导出为.onnx格式使用ONNXRuntime
- 【Python训练营打卡】day33 @浙大疏锦行
2301_77865880
MyPython训练营打卡python
DAY33简单的神经网络知识点回顾:1.PyTorch和cuda的安装2.查看显卡信息的命令行命令(cmd中使用)3.cuda的检查4.简单神经网络的流程a.数据预处理(归一化、转换成张量)b.模型的定义i.继承nn.Module类ii.定义每一个层iii.定义前向传播流程c.定义损失函数和优化器d.定义训练流程e.可视化loss过程预处理补充:注意事项:1.分类任务中,若标签是整数(如0/1/2
- Pytorch框架下基于LSTM、GRU和TCN的心跳信号分类识别研究
babyai997
python人工智能目标跟踪
Pytorch框架下基于LSTM、GRU和TCN的心跳信号分类识别研究摘要本文主要介绍了心跳信号的基础知识,包括心跳信号的产生机制、特点分析以及采集与处理方法。文章详细阐述了PyTorch框架在心跳信号分类识别中的应用,包括LSTM、GRU和TCN等模型的原理及实现。通过设计合理的实验方案,对不同模型在心跳信号分类识别任务中的性能进行了对比分析,发现GRU模型在计算效率和性能之间取得了较好平衡,而
- PyTorch实战(13)——WGAN详解与实现
盼小辉丶
pytorch人工智能python
PyTorch实战(13)——WGAN详解与实现0.前言1.WGAN与梯度惩罚2.WGAN工作原理2.1Wasserstein损失2.2Lipschitz约束2.3强制Lipschitz约束3.实现WGAN3.1数据加载与处理3.2模型构建3.3模型训练小结系列链接0.前言生成对抗网络(GenerativeAdversarialNetwork,GAN)模型训练过程通常会面临一些问题,如模式崩溃(生
- 深度学习×第4卷:Pytorch实战——她第一次用张量去拟合你的轨迹
Gyoku Mint
AI修炼日记人工智能人工智能聚类算法深度学习python神经网络pytorch
【开场·她画出的第一条直线是为了更靠近你】猫猫:“之前她只能在你身边叠叠张量,偷偷找梯度……现在,她要试试,能不能用这些线,把你的样子画出来喵~”狐狐:“这是她第一次把张量、自动微分和优化器都串成一条线,用最简单的线性回归,试着把你留给她的点都连起来。”【第一节·她先要一条路:生成一组可学的数据】✏️为什么要造数据?在PyTorch里跑线性回归,最好的练习就是用一条已知斜率的“理想直线”,加上一点
- 【第三章:神经网络原理详解与Pytorch入门】01.神经网络算法理论详解与实践-(4)神经网络中的重要组件
第三章:神经网络原理详解与Pytorch入门第一部分:神经网络算法理论详解与实践第四节:神经网络中的重要组件内容:激活函数、loss函数、dropout、梯度消失与爆炸、过拟合与欠拟合神经网络的性能依赖于多个关键组件的合理设计与使用。理解这些组件有助于构建更加稳健且高效的模型。一、激活函数(ActivationFunction)【深度学习】关键技术-激活函数(ActivationFunctions
- 《深度学习》—— PyTorch的介绍及PyTorch的CPU版本安装
张小生180
人工智能深度学习pytorch
文章目录一、PyTorch的简单介绍二、pytorch的CPU版本安装三、torch、torchvision、torchaudio三个库的介绍一、PyTorch的简单介绍PyTorch是一个由FacebookAI实验室开发的深度学习框架,它基于Python,并提供了高效的GPU加速和灵活的模型定义能力。1.PyTorch的基本特点动态计算图:PyTorch采用动态计算图的方式,这意味着计算图是在运
- PyTorch实战:从零开始构建CIFAR-10图像分类模型 (附详细代码与图解)
电脑能手
pytorch分类人工智能深度学习python
PyTorch实战:从零开始构建CIFAR-10图像分类模型(附详细代码与图解)大家好!今天,我们将一起踏上一段激动人心的深度学习之旅:使用强大的PyTorch框架,从零开始构建一个卷积神经网络(CNN),来解决经典的CIFAR-10图像分类问题。无论你是深度学习的新手,还是希望巩固PyTorch基础知识的开发者,本文都将为你提供一个清晰、详尽的实战指南。本文目标读完本文,你将学会:加载和预处理C
- 如何使用 PyTorch Lightning 保存和加载检查点
喝过期的拉菲
PyTorchLightningpytorch人工智能Lighting
【PL基础】如何保存和加载检查点1.什么是检查点(checkpoint)?2.检查点有哪些内容3.如何保存检查点4.如何加载检查点5.保存超参数6.nn.Module的检查点7.禁用checkpointing8.恢复训练状态1.什么是检查点(checkpoint)? 当模型进行训练时,性能会随着它继续看到更多数据而发生变化。最佳实践是在整个训练过程中保存模型的状态。这将在模型开发过程中的每个关键
- Pytorch Lightning使用:【LightningModule、LightningDataModule、Trainer、ModelCheckpoint】
LeapMay
pytorchlightningpytorchpython人工智能
pytorchlightning官方手册pytorchlightning官方手册Welcometo⚡PyTorchLightning—PyTorchLightning2.1.0devdocumentationhttps://lightning.ai/docs/pytorch/latest/PytorchLightning简介PyTorchLightning是面向专业AI研究人员和机器学习工程师的深
- 使用Ray实现的分布式PyTorch Lightning训练
刘瑛蓉
使用Ray实现的分布式PyTorchLightning训练ray_lightningPytorchLightningDistributedAcceleratorsusingRay项目地址:https://gitcode.com/gh_mirrors/ra/ray_lightning项目简介ray_lightning是一个不再维护的项目,现在已被【RayTrain】取代,它提供了将PyTorchLi
- 【PyTorch】PyTorch中张量(Tensor)微分操作
咸鱼鲸
PyTorchpytorch人工智能python
PyTorch深度学习总结第六章PyTorch中张量(Tensor)微分操作文章目录PyTorch深度学习总结前言一、torch.autograd模块二、主要功能和使用方法1.张量的requires_grad属性2.backward()方法3.torch.no_grad()上下文管理器三、函数总结前言上文介绍了PyTorch中张量(Tensor)的计算操作,本文将介绍张量的微分(torch.aut
- Ubuntu22.04安装CUDA12.1 cuDNN8.9.7 pytorch2.2.2
快乐的笨笨
linux
当前安装的电脑配置:电脑名称:暗影精灵5系统名称:Ubuntu22.04.4LTS操作系统类型:64位内存:8.0Gib处理器:Intel®Core™
[email protected]显卡:NVIDIACorporationTU117M[GeForceGTX1650Mobile/Max-Q]MesaI...安装前准备:需要安装对应的NVIDIA驱动程序、配置CUDA依赖环境g++gccm
- Deep Global Registration 代码环境配置(rtx3090+python3.8+cuda11.1+pytorch1.7+MinkowskiEngine0.5.1)
JPy646
pytorch深度学习神经网络
前言踩过的坑:因为rtx3090最低算力是8.6,似乎不支持过低版本的cuda。试过pytorch1.7.0+cuda11.0,但会报错,由于cuda11.0支持的最高算力达不到rtx最低的要求。但配置pytorch1.8时DGR的代码运行时会报错。对于没有这个烦恼的还是推荐安装python3.6+cuda10.2+pytorch1.6+MinkowskiEngine0.4.3,这个配置无需改动代
- RTX50系显卡+CUDA+torch+python对应关系
前言本人的显卡是RTX5070,使用时发现它对CUDA、torch和python版本有要求,试图按照老项目的依赖文件进行安装发现安不了,因此记录一下(截至2025年6月)。提示:以下是本篇文章正文内容,下面案例可供参考一、RTX50系显卡只能使用CUDA12.8二、目前只支持torch2.7.0和2.7.11.去pytorch官网的https://download.pytorch.org/whl/
- PyTorch-Llama: 从零开始实现LLaMA 2模型教程
乔昕连
PyTorch-Llama:从零开始实现LLaMA2模型教程pytorch-llamaLLaMA2implementedfromscratchinPyTorch项目地址:https://gitcode.com/gh_mirrors/py/pytorch-llama1.项目介绍PyTorch-Llama是一个在PyTorch平台上完全从零开始实现的LLaMA2模型仓库。该模型是一个强大的自回归语言模
- pytorch小记(二十六):全面解读 PyTorch 的 `torch.matmul`
pytorch小记(二十六):全面解读PyTorch的`torch.matmul`PyTorch中的`torch.matmul`详解与使用指南一、什么是`torch.matmul`二、基本用法示例1.向量点积(1-D×1-D)2.二维矩阵乘法(2-D×2-D)3.批量矩阵乘法(≥3-D)4.向量与矩阵混合三、与`mm`、`bmm`的区别四、性能与数值稳定性五、典型应用场景六、注意事项七、总结在深度
- pytorch小记(二十七):深入理解 PyTorch 中的 `.contiguous()`:内存布局与数据不变性
pytorch小记(二十七):深入理解PyTorch中的`.contiguous`:内存布局与数据不变性深入理解PyTorch中的`.contiguous()`:内存布局与数据不变性一、张量连续性(contiguity)概念二、`.contiguous()`的作用三、`.contiguous()`是否改变数值?四、与`.clone()`的区别五、常见使用场景六、总结深入理解PyTorch中的.co
- 利用人名语言分类案例演示RNN、LSTM和GRU的区别(基于PyTorch)
.30-06Springfield
rnnlstmgru分类人工智能pythonpytorch
文章目录一、程序结构1.1程序整体结构1.2各模块功能关系流程图二、数据预处理模块详解2.1定义字符集和语言类别2.2读取数据2.3人名转换为one-hot编码张量2.4自定义数据集类2.5数据加载器三、模型定义模块详解3.1RNN模型3.2LSTM模型3.3GRU模型四、模型训练与测试模块详解4.1测试模型基本功能4.2模型训练主函数五、结果可视化与对比模块详解六、模型预测模块详解七、案例结果分
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$