本文为7月30日Pytorch笔记,分为三个章节:
def compute_error_for_line_given_points(b, w, points):
totalError = 0
for i in range(0, len(points)):
x = points[i, 0]
y = points[i, 1]
totalError += (y - (w*x + b))**2
return totalError / float(len(points))
def step_gradient(b_current, w_current, points, learningRate):
b_gradient = 0
w_gradient = 0
N = float(len(points))
for i in range(0, len(points)):
x = points[i, 0]
y = points[i, 1]
b_gradient += -(2/N) * (y - ((w_current * x) + b_current))
w_gradient += -(2/N) * x * (y - ((w_current * x) + b_current))
new_b = b_current - (learningRate * b_gradient)
new_w = w_current - (learningRate * w_gradient)
return [new_b, new_w]
ef gradient_descent_runner(points, starting_b, starting_m, learning_rate, num_iterations):
b = starting_b
m = starting_m
for i in range(num_iterations):
b, m = step_gradient(b, m, np.array(points), learning_rate)
return [b, m]
X = [ v 1 , v 2 , … , v 784 ] H 1 = r e l u ( X W 1 + b 1 ) H 2 = r e l u ( H 1 W 2 + b 2 ) H 3 = r e l u ( H 2 W 3 + b 3 ) Y : [ 0 / 1 / … / 9 ] X = [v^1, v^2, …, v^{784}]\\ H_1 = relu(XW_1+b_1)\\ H_2 = relu(H_1W_2+b_2)\\ H_3 = relu(H_2W_3+b_3)\\ Y: [0/1/…/9] X=[v1,v2,…,v784]H1=relu(XW1+b1)H2=relu(H1W2+b2)H3=relu(H2W3+b3)Y:[0/1/…/9]
p r e d = W 3 ∗ { W 2 [ W 1 X + b 1 ] + b 2 } + b 3 o b j e c t i v e = ∑ ( p r e d − Y ) 2 pred = W_3 * \{W_2[W_1X + b_1] + b_2\} + b_3\\ objective =\sum (pred - Y)^2 pred=W3∗{W2[W1X+b1]+b2}+b3objective=∑(pred−Y)2
代码如下:
import torch
from torch import nn
from torch.nn import functional as F
from torch import optim
import torchvision
from matplotlib import pyplot as plt
from utils import plot_image, plot_curve, one_hot
batch_size = 512
# Step 1: load dataset
train_loader = torch.utils.data.DataLoader(
torchvision.datasets.MNIST('mnist_data', train=True, download=True,
transform=torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(
(0.1307,), (0.3081,))
])),
batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(
torchvision.datasets.MNIST('mnist_data/', train=False, download=True,
transform=torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(
(0.1307,), (0.3081,))
])),
batch_size=batch_size, shuffle=False)
x, y = next(iter(train_loader))
print(x.shape, y.shape, x.min(), x.max())
plot_image(x, y, 'image sample')
# Step 2
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
# xw + b
self.fc1 = nn.Linear(28*28, 256)
self.fc2 = nn.Linear(256, 64)
self.fc3 = nn.Linear(64, 10)
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
# Step 3: Training
net = Net()
# [w1, b1, w2, ]
optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9)
train_loss = []
for epoch in range(3):
for batch_idx, (x, y) in enumerate(train_loader):
x = x.view(x.size(0), 28*28)
out = net(x)
y_onehot = one_hot(y)
# loss = mse(out, y_onehot)
loss = F.mse_loss(out, y_onehot)
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss.append(loss.item())
if batch_idx % 10 == 0:
print(epoch, batch_idx, loss.item())
plot_curve(train_loss)
# got [w1, b1, w2, b2, w3, b3]
# Step 4: Accuracy
total_correct = 0
for x, y in test_loader:
x = x.view(x.size(0), 28*28)
out = net(x)
pred = out.argmax(dim=1)
correct = pred.eq(y).sum().float().item()
total_correct += correct
total_num = len(test_loader.dataset)
acc = total_correct / total_num
print('test ass: ', acc)
x, y = next(iter(test_loader))
out = net(x.view(x.size(0), 28*28))
pred = out.argmax(dim=1)
plot_image(x, pred, 'test')
>>> test ass: 0.8856