解决措施:I solved by adding the source code of torch.utils.ffi to my project without changing my pytorch version.(I use torch 1.4.0). For example, save the following code to ffiext.py, then you can replace from torch.utils.ffi import _wrap_function with from ffiext import _wrap_function. You can also find the following source code from 'https://s0pytorch0org.icopy.site/docs/0.4.1/_modules/torch/utils/ffi.html'.
import os
import glob
import tempfile
import shutil
from functools import wraps, reduce
from string import Template
import torch
import torch.cuda
from torch._utils import _accumulate
try:
import cffi
except ImportError:
raise ImportError("torch.utils.ffi requires the cffi package")
if cffi.__version_info__ < (1, 4, 0):
raise ImportError("torch.utils.ffi requires cffi version >= 1.4, but "
"got " + '.'.join(map(str, cffi.__version_info__)))
def _generate_typedefs():
typedefs = []
for t in ['Double', 'Float', 'Long', 'Int', 'Short', 'Char', 'Byte']:
for lib in ['TH', 'THCuda']:
for kind in ['Tensor', 'Storage']:
python_name = t + kind
if t == 'Float' and lib == 'THCuda':
th_name = 'THCuda' + kind
else:
th_name = lib + t + kind
th_struct = 'struct ' + th_name
typedefs += ['typedef {} {};'.format(th_struct, th_name)]
# We have to assemble a string here, because we're going to
# do this lookup based on tensor.type(), which returns a
# string (not a type object, as this code was before)
python_module = 'torch.cuda' if lib == 'THCuda' else 'torch'
python_class = python_module + '.' + python_name
_cffi_to_torch[th_struct] = python_class
_torch_to_cffi[python_class] = th_struct
return '\n'.join(typedefs) + '\n'
_cffi_to_torch = {}
_torch_to_cffi = {}
_typedefs = _generate_typedefs()
PY_MODULE_TEMPLATE = Template("""
from torch.utils.ffi import _wrap_function
from .$cffi_wrapper_name import lib as _lib, ffi as _ffi
__all__ = []
def _import_symbols(locals):
for symbol in dir(_lib):
fn = getattr(_lib, symbol)
if callable(fn):
locals[symbol] = _wrap_function(fn, _ffi)
else:
locals[symbol] = fn
__all__.append(symbol)
_import_symbols(locals())
""")
def _setup_wrapper(with_cuda):
here = os.path.abspath(os.path.dirname(__file__))
lib_dir = os.path.join(here, '..', '..', 'lib')
include_dirs = [
os.path.join(lib_dir, 'include'),
os.path.join(lib_dir, 'include', 'TH'),
]
wrapper_source = '#include
\n'
if with_cuda:
import torch.cuda
wrapper_source += '#include \n'
if os.sys.platform == 'win32':
cuda_include_dirs = glob.glob(os.getenv('CUDA_PATH', '') + '/include')
cuda_include_dirs += glob.glob(os.getenv('NVTOOLSEXT_PATH', '') + '/include')
else:
cuda_include_dirs = glob.glob('/usr/local/cuda/include')
cuda_include_dirs += glob.glob('/Developer/NVIDIA/CUDA-*/include')
include_dirs.append(os.path.join(lib_dir, 'include', 'THC'))
include_dirs.extend(cuda_include_dirs)
return wrapper_source, include_dirs
def _create_module_dir(base_path, fullname):
module, _, name = fullname.rpartition('.')
if not module:
target_dir = name
else:
target_dir = reduce(os.path.join, fullname.split('.'))
target_dir = os.path.join(base_path, target_dir)
try:
os.makedirs(target_dir)
except os.error:
pass
for dirname in _accumulate(fullname.split('.'), os.path.join):
init_file = os.path.join(base_path, dirname, '__init__.py')
open(init_file, 'a').close() # Create file if it doesn't exist yet
return name, target_dir
def _build_extension(ffi, cffi_wrapper_name, target_dir, verbose):
try:
tmpdir = tempfile.mkdtemp()
ext_suf = '.pyd' if os.sys.platform == 'win32' else '.so'
libname = cffi_wrapper_name + ext_suf
outfile = ffi.compile(tmpdir=tmpdir, verbose=verbose, target=libname)
shutil.copy(outfile, os.path.join(target_dir, libname))
finally:
shutil.rmtree(tmpdir)
def _make_python_wrapper(name, cffi_wrapper_name, target_dir):
py_source = PY_MODULE_TEMPLATE.substitute(name=name,
cffi_wrapper_name=cffi_wrapper_name)
with open(os.path.join(target_dir, '__init__.py'), 'w') as f:
f.write(py_source)
def create_extension(name, headers, sources, verbose=True, with_cuda=False,
package=False, relative_to='.', **kwargs):
base_path = os.path.abspath(os.path.dirname(relative_to))
name_suffix, target_dir = _create_module_dir(base_path, name)
if not package:
cffi_wrapper_name = '_' + name_suffix
else:
cffi_wrapper_name = (name.rpartition('.')[0] +
'.{0}._{0}'.format(name_suffix))
wrapper_source, include_dirs = _setup_wrapper(with_cuda)
include_dirs.extend(kwargs.pop('include_dirs', []))
if os.sys.platform == 'win32':
library_dirs = glob.glob(os.getenv('CUDA_PATH', '') + '/lib/x64')
library_dirs += glob.glob(os.getenv('NVTOOLSEXT_PATH', '') + '/lib/x64')
here = os.path.abspath(os.path.dirname(__file__))
lib_dir = os.path.join(here, '..', '..', 'lib')
library_dirs.append(os.path.join(lib_dir))
else:
library_dirs = []
library_dirs.extend(kwargs.pop('library_dirs', []))
if isinstance(headers, str):
headers = [headers]
all_headers_source = ''
for header in headers:
with open(os.path.join(base_path, header), 'r') as f:
all_headers_source += f.read() + '\n\n'
ffi = cffi.FFI()
sources = [os.path.join(base_path, src) for src in sources]
# NB: TH headers are C99 now
kwargs['extra_compile_args'] = ['-std=c99'] + kwargs.get('extra_compile_args', [])
ffi.set_source(cffi_wrapper_name, wrapper_source + all_headers_source,
sources=sources,
include_dirs=include_dirs,
library_dirs=library_dirs, **kwargs)
ffi.cdef(_typedefs + all_headers_source)
_make_python_wrapper(name_suffix, '_' + name_suffix, target_dir)
def build():
_build_extension(ffi, cffi_wrapper_name, target_dir, verbose)
ffi.build = build
return ffi
def _wrap_function(function, ffi):
@wraps(function)
def safe_call(*args, **kwargs):
args = tuple(ffi.cast(_torch_to_cffi.get(arg.type(), 'void') + '*', arg._cdata)
if isinstance(arg, torch.Tensor) or torch.is_storage(arg)
else arg
for arg in args)
args = (function,) + args
result = torch._C._safe_call(*args, **kwargs)
if isinstance(result, ffi.CData):
typeof = ffi.typeof(result)
if typeof.kind == 'pointer':
cdata = int(ffi.cast('uintptr_t', result))
cname = typeof.item.cname
if cname in _cffi_to_torch:
# TODO: Maybe there is a less janky way to eval
# off of this
return eval(_cffi_to_torch[cname])(cdata=cdata)
return result
return safe_call
.oracle层次查询(connect by)
oracle的emp表中包含了一列mgr指出谁是雇员的经理,由于经理也是雇员,所以经理的信息也存储在emp表中。这样emp表就是一个自引用表,表中的mgr列是一个自引用列,它指向emp表中的empno列,mgr表示一个员工的管理者,
select empno,mgr,ename,sal from e
SAPHANA平台有各种各样的应用场景,这也意味着客户的实施方法有许多种选择,关键是如何挑选最适合他们需求的实施方案。
在 《Implementing SAP HANA》这本书中,介绍了SAP平台在现实场景中的运作原理,并给出了实施建议和成功案例供参考。本系列文章节选自《Implementing SAP HANA》,介绍了行存储和列存储的各自特点,以及SAP HANA的数据存储方式如何提升空间压
学习Java有没有什么捷径?要想学好Java,首先要知道Java的大致分类。自从Sun推出Java以来,就力图使之无所不包,所以Java发展到现在,按应用来分主要分为三大块:J2SE,J2ME和J2EE,这也就是Sun ONE(Open Net Environment)体系。J2SE就是Java2的标准版,主要用于桌面应用软件的编程;J2ME主要应用于嵌入是系统开发,如手机和PDA的编程;J2EE
JSF 2.0 introduced annotation @ViewScoped; A bean annotated with this scope maintained its state as long as the user stays on the same view(reloads or navigation - no intervening views). One problem w
很多文档说Zookeeper是强一致性保证,事实不然。关于一致性模型请参考http://bit1129.iteye.com/blog/2155336
Zookeeper的数据同步协议
Zookeeper采用称为Quorum Based Protocol的数据同步协议。假如Zookeeper集群有N台Zookeeper服务器(N通常取奇数,3台能够满足数据可靠性同时
Spring Security提供了一个实现了可以缓存UserDetails的UserDetailsService实现类,CachingUserDetailsService。该类的构造接收一个用于真正加载UserDetails的UserDetailsService实现类。当需要加载UserDetails时,其首先会从缓存中获取,如果缓存中没