【无人机】四轴无人机的轨迹进行可视化和动画处理(Matlab代码实现)

 本文目录如下:⛳️⛳️⛳️

目录

1 概述

2 运行结果

3 参考文献

4 Matlab代码实现


1 概述

随着传感器检测技术、智能控制技术和材料技术的快速发展,四轴无人机及其配套系统的发展越来越成熟。无人机遥感系统具有成本低、易维护、效率高、时效性强及对环境要求低等特点。

2 运行结果

【无人机】四轴无人机的轨迹进行可视化和动画处理(Matlab代码实现)_第1张图片

 【无人机】四轴无人机的轨迹进行可视化和动画处理(Matlab代码实现)_第2张图片

部分代码:

function animation = drone_Animation(x,y,z,roll,pitch,yaw)
% This Animation code is for QuadCopter. Written by Jitendra Singh 

%% Define design parameters
D2R = pi/180;
R2D = 180/pi;
b   = 0.6;   % the length of total square cover by whole body of quadcopter in meter
a   = b/3;   % the legth of small square base of quadcopter(b/4)
H   = 0.06;  % hight of drone in Z direction (4cm)
H_m = H+H/2; % hight of motor in z direction (5 cm)
r_p = b/4;   % radius of propeller
%% Conversions
ro = 45*D2R;                   % angle by which rotate the base of quadcopter
Ri = [cos(ro) -sin(ro) 0;
      sin(ro) cos(ro)  0;
       0       0       1];     % rotation matrix to rotate the coordinates of base 
base_co = [-a/2  a/2 a/2 -a/2; % Coordinates of Base 
           -a/2 -a/2 a/2 a/2;
             0    0   0   0];
base = Ri*base_co;             % rotate base Coordinates by 45 degree 

to = linspace(0, 2*pi);
xp = r_p*cos(to);
yp = r_p*sin(to);
zp = zeros(1,length(to));
%% Define Figure plot
 fig1 = figure('pos', [0 50 800 600]);
 hg   = gca;
 view(68,53);
 grid on;
 axis equal;
 xlim([-1.5 1.5]); ylim([-1.5 1.5]); zlim([0 3.5]);
 title('(JITENDRA) Drone Animation')
 xlabel('X[m]');
 ylabel('Y[m]');
 zlabel('Z[m]');
 hold(gca, 'on');
 
%% Design Different parts
% design the base square
 drone(1) = patch([base(1,:)],[base(2,:)],[base(3,:)],'r');
 drone(2) = patch([base(1,:)],[base(2,:)],[base(3,:)+H],'r');
 alpha(drone(1:2),0.7);
% design 2 parpendiculer legs of quadcopter 
 [xcylinder ycylinder zcylinder] = cylinder([H/2 H/2]);
 drone(3) =  surface(b*zcylinder-b/2,ycylinder,xcylinder+H/2,'facecolor','b');
 drone(4) =  surface(ycylinder,b*zcylinder-b/2,xcylinder+H/2,'facecolor','b') ; 
 alpha(drone(3:4),0.6);
% design 4 cylindrical motors 
 drone(5) = surface(xcylinder+b/2,ycylinder,H_m*zcylinder+H/2,'facecolor','r');
 drone(6) = surface(xcylinder-b/2,ycylinder,H_m*zcylinder+H/2,'facecolor','r');
 drone(7) = surface(xcylinder,ycylinder+b/2,H_m*zcylinder+H/2,'facecolor','r');
 drone(8) = surface(xcylinder,ycylinder-b/2,H_m*zcylinder+H/2,'facecolor','r');
 alpha(drone(5:8),0.7);
% design 4 propellers
 drone(9)  = patch(xp+b/2,yp,zp+(H_m+H/2),'c','LineWidth',0.5);
 drone(10) = patch(xp-b/2,yp,zp+(H_m+H/2),'c','LineWidth',0.5);
 drone(11) = patch(xp,yp+b/2,zp+(H_m+H/2),'p','LineWidth',0.5);
 drone(12) = patch(xp,yp-b/2,zp+(H_m+H/2),'p','LineWidth',0.5);
 alpha(drone(9:12),0.3);

%% create a group object and parent surface
  combinedobject = hgtransform('parent',hg );
  set(drone,'parent',combinedobject)
%  drawnow
 
 for i = 1:length(x)
  
     ba = plot3(x(1:i),y(1:i),z(1:i), 'b:','LineWidth',1.5);
   
     translation = makehgtform('translate',...
                               [x(i) y(i) z(i)]);
     %set(combinedobject, 'matrix',translation);
     rotation1 = makehgtform('xrotate',(pi/180)*(roll(i)));
     rotation2 = makehgtform('yrotate',(pi/180)*(pitch(i)));
     rotation3 = makehgtform('zrotate',yaw(i));
     %scaling = makehgtform('scale',1-i/20);
     set(combinedobject,'matrix',...
          translation*rotation3*rotation2*rotation1);
      
      %movieVector(i) =  getframe(fig1);
        %delete(b);
     drawnow
   % pause(0.2);
 end

 

function animation = drone_Animation(x,y,z,roll,pitch,yaw)
% This Animation code is for QuadCopter. Written by Jitendra Singh 

%% Define design parameters
D2R = pi/180;
R2D = 180/pi;
b   = 0.6;   % the length of total square cover by whole body of quadcopter in meter
a   = b/3;   % the legth of small square base of quadcopter(b/4)
H   = 0.06;  % hight of drone in Z direction (4cm)
H_m = H+H/2; % hight of motor in z direction (5 cm)
r_p = b/4;   % radius of propeller
%% Conversions
ro = 45*D2R;                   % angle by which rotate the base of quadcopter
Ri = [cos(ro) -sin(ro) 0;
      sin(ro) cos(ro)  0;
       0       0       1];     % rotation matrix to rotate the coordinates of base 
base_co = [-a/2  a/2 a/2 -a/2; % Coordinates of Base 
           -a/2 -a/2 a/2 a/2;
             0    0   0   0];
base = Ri*base_co;             % rotate base Coordinates by 45 degree 

to = linspace(0, 2*pi);
xp = r_p*cos(to);
yp = r_p*sin(to);
zp = zeros(1,length(to));
%% Define Figure plot
 fig1 = figure('pos', [0 50 800 600]);
 hg   = gca;
 view(68,53);
 grid on;
 axis equal;
 xlim([-1.5 1.5]); ylim([-1.5 1.5]); zlim([0 3.5]);
 title('(JITENDRA) Drone Animation')
 xlabel('X[m]');
 ylabel('Y[m]');
 zlabel('Z[m]');
 hold(gca, 'on');
 
%% Design Different parts
% design the base square
 drone(1) = patch([base(1,:)],[base(2,:)],[base(3,:)],'r');
 drone(2) = patch([base(1,:)],[base(2,:)],[base(3,:)+H],'r');
 alpha(drone(1:2),0.7);
% design 2 parpendiculer legs of quadcopter 
 [xcylinder ycylinder zcylinder] = cylinder([H/2 H/2]);
 drone(3) =  surface(b*zcylinder-b/2,ycylinder,xcylinder+H/2,'facecolor','b');
 drone(4) =  surface(ycylinder,b*zcylinder-b/2,xcylinder+H/2,'facecolor','b') ; 
 alpha(drone(3:4),0.6);
% design 4 cylindrical motors 
 drone(5) = surface(xcylinder+b/2,ycylinder,H_m*zcylinder+H/2,'facecolor','r');
 drone(6) = surface(xcylinder-b/2,ycylinder,H_m*zcylinder+H/2,'facecolor','r');
 drone(7) = surface(xcylinder,ycylinder+b/2,H_m*zcylinder+H/2,'facecolor','r');
 drone(8) = surface(xcylinder,ycylinder-b/2,H_m*zcylinder+H/2,'facecolor','r');
 alpha(drone(5:8),0.7);
% design 4 propellers
 drone(9)  = patch(xp+b/2,yp,zp+(H_m+H/2),'c','LineWidth',0.5);
 drone(10) = patch(xp-b/2,yp,zp+(H_m+H/2),'c','LineWidth',0.5);
 drone(11) = patch(xp,yp+b/2,zp+(H_m+H/2),'p','LineWidth',0.5);
 drone(12) = patch(xp,yp-b/2,zp+(H_m+H/2),'p','LineWidth',0.5);
 alpha(drone(9:12),0.3);

%% create a group object and parent surface
  combinedobject = hgtransform('parent',hg );
  set(drone,'parent',combinedobject)
%  drawnow
 
 for i = 1:length(x)
  
     ba = plot3(x(1:i),y(1:i),z(1:i), 'b:','LineWidth',1.5);
   
     translation = makehgtform('translate',...
                               [x(i) y(i) z(i)]);
     %set(combinedobject, 'matrix',translation);
     rotation1 = makehgtform('xrotate',(pi/180)*(roll(i)));
     rotation2 = makehgtform('yrotate',(pi/180)*(pitch(i)));
     rotation3 = makehgtform('zrotate',yaw(i));
     %scaling = makehgtform('scale',1-i/20);
     set(combinedobject,'matrix',...
          translation*rotation3*rotation2*rotation1);
      
      %movieVector(i) =  getframe(fig1);
        %delete(b);
     drawnow
   % pause(0.2);
 end

 


博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者,博主专门做了一个专栏目录,整个专栏只放了一篇文章,做到极度细致,方便大家进行学习!亲民!!!还有我开了一个专栏给女朋友的,很浪漫的喔,代码学累的时候去瞧一瞧,看一看:女朋友的浪漫邂逅。有问题可以私密博主,博主看到会在第一时间回复。
 

                          ‍博主课外兴趣:中西方哲学,送予读者:

‍做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“真理”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......

3 参考文献

部分理论引用网络文献,如有侵权请联系删除。

[1]李想,李阳.四轴无人机在林业管理中的应用[J].广西林业科学,2020,49(02):296-299.DOI:10.19692/j.cnki.gfs.2020.02.028.

4 Matlab代码实现

博客主页:@橘柑橙柠桔柚

你可能感兴趣的:(路径规划(Matlab代码),无人机,无人机,matlab,开发语言)