tensorflow 的dynamic_rnn方法,我们用一个小例子来说明其用法,假设你的RNN的输入input是[2,20,128],其中2是batch_size,20是文本最大长度,128是embedding_size,可以看出,有两个example,我们假设第二个文本长度只有13,剩下的7个是使用0-padding方法填充的。dynamic返回的是两个参数:outputs,last_states,其中outputs是[2,20,128],也就是每一个迭代隐状态的输出,last_states是由(c,h)组成的tuple,均为[batch,128]。
dynamic有个参数:sequence_length,这个参数用来指定每个example的长度,比如上面的例子中,我们令 sequence_length为[20,13],表示第一个example有效长度为20,第二个example有效长度为13,当我们传入这个参数的时候,对于第二个example,TensorFlow对于13以后的padding就不计算了,其last_states将重复第13步的last_states直至第20步,而outputs中超过13步的结果将会被置零。
测试实验结果可见:
https://blog.csdn.net/u010223750/article/details/71079036
对于自己通过static_rnn实现dynamic_rnn,就不得不考虑每个sequence的长度了。
对于mnist这样的等长序列,不需要在意padding。但是实际任务中,更多的是变长序列。还是以文本分类为例,假设第一个句子有效长度为20,第二个句子有效长度为13,设置的max length是20;那么需要对第二个句子进行padding。一般的做法是,在list的左端填上0,维持序列长度是max length。
更具体来说,假如所有出现的word数目是200,那么通常会在词表中增加一个'PAD'。
vocabulary list:['PAD', 'I', 'love', 'coding', ... ]
vocabulary list, word2index,以及embedding 层的关系如下:
PAD ---> 0 ---> embedding vector 1;
I ---> 1 ---> embedding vector 2;
love ---> 2 ---> embedding vector 3;
coding ---> 3 ---> embedding vector 4;
句子'I love coding' 会用index来表示,变成[1,2,3];
经过padding之后,会填充0,使得所有句子成为等长序列,如[0,0,0,0,0,0,0,1,2,3] (这里假定max length统一为10);
然后,这个index组成的list会输入到embedding层,每一个index会从embedding层取到对应的embedding vector;每一个句子就相当于用二维矩阵表示;每个batch有多个句子,就相当于三维张量了。
这个过程可以看另一篇blog,https://blog.csdn.net/Zhou_Dao/article/details/103751162
e.g.1 LSTM做mnist分类--> stastic_rnn 用法示例
import tensorflow as tf
from tensorflow.contrib import rnn
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("D:/vsCode_tensorflow/PKU_TF/PKU_TF_shuzi/data2", one_hot=True)
# Training Parameters
learning_rate = 0.001
training_steps = 10000
batch_size = 128
display_step = 200
# Network Parameters
num_input = 28 # MNIST data input (img shape: 28*28)
timesteps = 28 # timesteps
num_hidden = 128 # hidden layer num of features
num_classes = 10 # MNIST total classes (0-9 digits)
# tf Graph input
X = tf.placeholder("float", [None, timesteps, num_input])
Y = tf.placeholder("float", [None, num_classes])
# Define weights
weights = {
'out': tf.Variable(tf.random_normal([num_hidden, num_classes]))
}
biases = {
'out': tf.Variable(tf.random_normal([num_classes]))
}
def RNN(x, weights, biases):
# Current data input shape: (batch_size, timesteps, n_input)
# Required shape: 'timesteps' tensors list of shape (batch_size, n_input)
# Unstack to get a list of 'timesteps' tensors of shape (batch_size, n_input)
x = tf.unstack(x, timesteps, 1)
# static_rnn的输入是二维shape=[batch,input]
# Define a lstm cell with tensorflow
lstm_cell = rnn.BasicLSTMCell(num_hidden, forget_bias=1.0)
# Get lstm cell output
outputs, states = rnn.static_rnn(lstm_cell, x, dtype=tf.float32)
# Linear activation, using rnn inner loop last output
return tf.matmul(outputs[-1], weights['out']) + biases['out']
# outputs[-1]表示最后一个timestep的(batch_size,output)
logits = RNN(X, weights, biases)
prediction = tf.nn.softmax(logits)
# Define loss and optimizer
loss_op = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=Y))
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
train_op = optimizer.minimize(loss_op)
# Evaluate model (with test logits, for dropout to be disabled)
correct_pred = tf.equal(tf.argmax(prediction, 1), tf.argmax(Y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# Initialize the variables (i.e. assign their default value)
init = tf.global_variables_initializer()
# Start training
with tf.Session() as sess:
# Run the initializer
sess.run(init)
for step in range(1, training_steps+1):
batch_x, batch_y = mnist.train.next_batch(batch_size)
# print('batch_x:',batch_x)
# Reshape data to get 28 seq of 28 elements
batch_x = batch_x.reshape([batch_size, timesteps, num_input])
# print('reshaped_batch_x:', batch_x)
# Run optimization op (backprop)
sess.run(train_op, feed_dict={X: batch_x, Y: batch_y})
if step % display_step == 0 or step == 1:
# Calculate batch loss and accuracy
loss, acc, prediction2 = sess.run([loss_op, accuracy, prediction], feed_dict={X: batch_x, Y: batch_y})
a = tf.cast(tf.argmax(prediction2, 1), tf.float32)
b = tf.cast(tf.argmax(batch_y, 1), tf.float32)
a2, b2 = sess.run([a, b], feed_dict={X: batch_x,Y: batch_y})
print('pred , label', a2, b2)
print("Step " + str(step) + ", Minibatch Loss= " +
"{:.4f}".format(loss) + ", Training Accuracy= " +
"{:.3f}".format(acc))
print("Optimization Finished!")
# Calculate accuracy for 128 mnist test images
test_len = 128
test_data = mnist.test.images[:test_len].reshape((-1, timesteps, num_input))
test_label = mnist.test.labels[:test_len]
print("Testing Accuracy:",sess.run(accuracy, feed_dict={X: test_data, Y: test_label}))
e.g. 2 使用static_rnn实现LSTM,判断序列是否是线性的。
import tensorflow as tf
import random
# 训练一个分类器,把有规律的线性序列和没有规律的随机序列分开
# ====================
# TOY DATA GENERATOR
# ====================
class ToySequenceData(object):
""" Generate sequence of data with dynamic length.
This class generate samples for training:
- Class 0: linear sequences (i.e. [0, 1, 2, 3,...])
- Class 1: random sequences (i.e. [1, 3, 10, 7,...])
NOTICE:
We have to pad each sequence to reach 'max_seq_len' for TensorFlow
consistency (we cannot feed a numpy array with inconsistent
dimensions). The dynamic calculation will then be perform thanks to
'seqlen' attribute that records every actual sequence length.
"""
def __init__(self, n_samples=1000, max_seq_len=20, min_seq_len=3,
max_value=1000):
self.data = []
self.labels = []
self.seqlen = []
for i in range(n_samples):
# Random sequence length
len = random.randint(min_seq_len, max_seq_len)
# Monitor sequence length for TensorFlow dynamic calculation
self.seqlen.append(len)
# Add a random or linear int sequence (50% prob)
if random.random() < .5:
# Generate a linear sequence
rand_start = random.randint(0, max_value - len) # 产生3-20之间的随机数
s = [[float(i)/max_value] for i in
range(rand_start, rand_start + len)]
# Pad sequence for dimension consistency
s += [[0.] for i in range(max_seq_len - len)]
self.data.append(s)
self.labels.append([1., 0.])
else:
# Generate a random sequence
s = [[float(random.randint(0, max_value))/max_value]
for i in range(len)]
# Pad sequence for dimension consistency
s += [[0.] for i in range(max_seq_len - len)]
self.data.append(s)
self.labels.append([0., 1.])
self.batch_id = 0 # batch_id 是全局变量,因此记录了累加值
def next(self, batch_size):
""" Return a batch of data. When dataset end is reached, start over.
"""
if self.batch_id == len(self.data):
self.batch_id = 0
batch_data = (self.data[self.batch_id:min(self.batch_id +
batch_size, len(self.data))])
batch_labels = (self.labels[self.batch_id:min(self.batch_id +
batch_size, len(self.data))])
batch_seqlen = (self.seqlen[self.batch_id:min(self.batch_id +
batch_size, len(self.data))])
self.batch_id = min(self.batch_id + batch_size, len(self.data))
return batch_data, batch_labels, batch_seqlen
# ==========
# MODEL
# ==========
# Parameters
learning_rate = 0.01
training_steps = 10000
batch_size = 128
display_step = 200
# Network Parameters
seq_max_len = 20 # Sequence max length
n_hidden = 64 # hidden layer num of features
n_classes = 2 # linear sequence or not
trainset = ToySequenceData(n_samples=1000, max_seq_len=seq_max_len)
testset = ToySequenceData(n_samples=500, max_seq_len=seq_max_len)
# tf Graph input
x = tf.placeholder("float", [None, seq_max_len, 1]) # 注意这里的input 1
y = tf.placeholder("float", [None, n_classes])
# A placeholder for indicating each sequence length
seqlen = tf.placeholder(tf.int32, [None])
# Define weights
weights = {
'out': tf.Variable(tf.random_normal([n_hidden, n_classes]))
}
biases = {
'out': tf.Variable(tf.random_normal([n_classes]))
}
def dynamicRNN(x, seqlen, weights, biases):
# Prepare data shape to match `rnn` function requirements
# Current data input shape: (batch_size, n_steps, n_input)
# Required shape: 'n_steps' tensors list of shape (batch_size, n_input)
# Unstack to get a list of 'n_steps' tensors of shape (batch_size, n_input)
x = tf.unstack(x, seq_max_len, 1)
# Define a lstm cell with tensorflow
lstm_cell = tf.contrib.rnn.BasicLSTMCell(n_hidden)
# Get lstm cell output, providing 'sequence_length' will perform dynamic
# calculation.
outputs, states = tf.contrib.rnn.static_rnn(lstm_cell, x, dtype=tf.float32, sequence_length=seqlen)
# When performing dynamic calculation, we must retrieve the last
# dynamically computed output, i.e., if a sequence length is 10, we need
# to retrieve the 10th output.
# However TensorFlow doesn't support advanced indexing yet, so we build
# a custom op that for each sample in batch size, get its length and
# get the corresponding relevant output.
# 'outputs' is a list of output at every timestep, we pack them in a Tensor
# and change back dimension to [batch_size, n_step, n_input]
outputs = tf.stack(outputs)
outputs = tf.transpose(outputs, [1, 0, 2])
# Hack to build the indexing and retrieve the right output.
batch_size = tf.shape(outputs)[0]
# Start indices for each sample
index = tf.range(0, batch_size) * seq_max_len + (seqlen - 1)
# Indexing
outputs = tf.gather(tf.reshape(outputs, [-1, n_hidden]), index)
# Linear activation, using outputs computed above
return tf.matmul(outputs, weights['out']) + biases['out']
pred = dynamicRNN(x, seqlen, weights, biases)
# Define loss and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(cost)
# Evaluate model
correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# Initialize the variables (i.e. assign their default value)
init = tf.global_variables_initializer()
# Start training
with tf.Session() as sess:
# Run the initializer
sess.run(init)
for step in range(1, training_steps+1):
batch_x, batch_y, batch_seqlen = trainset.next(batch_size)
# Run optimization op (backprop)
sess.run(optimizer, feed_dict={x: batch_x, y: batch_y,
seqlen: batch_seqlen})
if step % display_step == 0 or step == 1:
# Calculate batch accuracy & loss
acc, loss = sess.run([accuracy, cost], feed_dict={x: batch_x, y: batch_y,
seqlen: batch_seqlen})
print("Step " + str(step) + ", Minibatch Loss= " +
"{:.6f}".format(loss) + ", Training Accuracy= " +
"{:.5f}".format(acc))
print("Optimization Finished!")
# Calculate accuracy
test_data = testset.data
test_label = testset.labels
test_seqlen = testset.seqlen
print("Testing Accuracy:",sess.run(accuracy, feed_dict={x: test_data, y: test_label, seqlen: test_seqlen}))
e.g. 3 直接用dynamic_rnn,LSTM判断序列是否是线性的。
# coding: utf-8
from __future__ import print_function
import tensorflow as tf
import random
import numpy as np
# 来自tensorflow21项目 第13章
class ToySequenceData(object):
""" 生成序列数据。每个数量可能具有不同的长度。
一共生成下面两类数据
- 类别 0: 线性序列 (如 [0, 1, 2, 3,...])
- 类别 1: 完全随机的序列 (i.e. [1, 3, 10, 7,...])
注意:
max_seq_len是最大的序列长度。对于长度小于这个数值的序列,我们将会补0。
在送入RNN计算时,会借助sequence_length这个属性来进行相应长度的计算。
"""
def __init__(self, n_samples=1000, max_seq_len=20, min_seq_len=3,
max_value=1000):
self.data = []
self.labels = []
self.seqlen = []
for i in range(n_samples):
# 序列的长度是随机的,在min_seq_len和max_seq_len之间。
len = random.randint(min_seq_len, max_seq_len)
# self.seqlen用于存储所有的序列。 实际的序列长度,不算0
self.seqlen.append(len)
# 以50%的概率,随机添加一个线性或随机的训练
if random.random() < .5:
# 生成一个线性序列
rand_start = random.randint(0, max_value - len)
s = [[float(i)/max_value] for i in range(rand_start, rand_start + len)]
# 长度不足max_seq_len的需要补0
s += [[0.] for i in range(max_seq_len - len)]
self.data.append(s)
# 线性序列的label是[1, 0](因为我们一共只有两类)
self.labels.append([1., 0.])
else:
# 生成一个随机序列
s = [[float(random.randint(0, max_value))/max_value] for i in range(len)]
# 长度不足max_seq_len的需要补0
s += [[0.] for i in range(max_seq_len - len)]
self.data.append(s)
self.labels.append([0., 1.])
self.batch_id = 0 # batch_id 是全局变量,因此记录了累加值
def next(self, batch_size):
"""
生成batch_size的样本。
如果使用完了所有样本,会重新从头开始。
"""
if self.batch_id == len(self.data):
self.batch_id = 0
batch_data = (self.data[self.batch_id:min(self.batch_id + batch_size, len(self.data))])
batch_labels = (self.labels[self.batch_id:min(self.batch_id + batch_size, len(self.data))])
batch_seqlen = (self.seqlen[self.batch_id:min(self.batch_id + batch_size, len(self.data))])
self.batch_id = min(self.batch_id + batch_size, len(self.data))
return batch_data, batch_labels, batch_seqlen
# 这一部分只是测试一下如何使用上面定义的ToySequenceData
tmp = ToySequenceData()
# 生成样本
batch_data, batch_labels, batch_seqlen = tmp.next(32)
# batch_data是序列数据,它是一个嵌套的list,形状为(batch_size, max_seq_len, 1)
print(np.array(batch_data).shape) # (32, 20, 1)
# 我们之前调用tmp.next(32),因此一共有32个序列
# 我们可以打出第一个序列
print(batch_data[0]) # 形如 [[0.084], [0.085].....[0.086], [0.087], [0.088]
# batch_labels是label,它也是一个嵌套的list,形状为(batch_size, 2)
# (batch_size, 2)中的“2”表示为两类分类
print(np.array(batch_labels).shape) # (32, 2)
# 我们可以打出第一个序列的label
print(batch_labels[0]) # [1.0, 0.0]
# batch_seqlen一个长度为batch_size的list,表示每个序列的实际长度
print(np.array(batch_seqlen).shape) # (32,)
# 我们可以打出第一个序列的长度
print(batch_seqlen[0])
batch_data2, batch_labels2, batch_seqlen2 = tmp.next(32)
print(batch_data2[0])
# 运行的参数
learning_rate = 0.01
training_iters = 1000000
batch_size = 128
display_step = 10
# 网络定义时的参数
seq_max_len = 20 # 最大的序列长度
n_hidden = 64 # 隐层的size
n_classes = 2 # 类别数
trainset = ToySequenceData(n_samples=1000, max_seq_len=seq_max_len)
testset = ToySequenceData(n_samples=500, max_seq_len=seq_max_len)
# x为输入,y为输出
# None的位置实际为batch_size
x = tf.placeholder("float", [None, seq_max_len, 1])
y = tf.placeholder("float", [None, n_classes])
# 这个placeholder存储了输入的x中,每个序列的实际长度
seqlen = tf.placeholder(tf.int32, [None])
# weights和bias在输出时会用到
weights = {
'out': tf.Variable(tf.random_normal([n_hidden, n_classes]))
}
biases = {
'out': tf.Variable(tf.random_normal([n_classes]))
}
def dynamicRNN(x, seqlen, weights, biases):
# 输入x的形状: (batch_size, max_seq_len, n_input)
# 输入seqlen的形状:(batch_size, )
# 定义一个lstm_cell,隐层的大小为n_hidden(之前的参数)
lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(n_hidden)
# 使用tf.nn.dynamic_rnn展开时间维度
# 此外sequence_length=seqlen也很重要,它告诉TensorFlow每一个序列应该运行多少步
outputs, states = tf.nn.dynamic_rnn(lstm_cell, x, dtype=tf.float32, sequence_length=seqlen)
# outputs的形状为(batch_size, max_seq_len, n_hidden)
# 如果有疑问可以参考上一章内容
# 我们希望的是取出与序列长度相对应的输出。如一个序列长度为10,我们就应该取出第10个输出
# 但是TensorFlow不支持直接对outputs进行索引,因此我们用下面的方法来做:
batch_size = tf.shape(outputs)[0]
# 得到每一个序列真正的index
index = tf.range(0, batch_size) * seq_max_len + (seqlen - 1)
outputs = tf.gather(tf.reshape(outputs, [-1, n_hidden]), index)
# 给最后的输出
return tf.matmul(outputs, weights['out']) + biases['out']
# 这里的pred是logits而不是概率
pred = dynamicRNN(x, seqlen, weights, biases)
# 因为pred是logits,因此用tf.nn.softmax_cross_entropy_with_logits来定义损失
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(cost)
# 分类准确率
correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# 初始化
init = tf.global_variables_initializer()
# 训练
with tf.Session() as sess:
sess.run(init)
step = 1
while step * batch_size < training_iters:
batch_x, batch_y, batch_seqlen = trainset.next(batch_size)
# 每run一次就会更新一次参数
sess.run(optimizer, feed_dict={x: batch_x, y: batch_y, seqlen: batch_seqlen})
if step % display_step == 0:
# 在这个batch内计算准确度
acc = sess.run(accuracy, feed_dict={x: batch_x, y: batch_y, seqlen: batch_seqlen})
# 在这个batch内计算损失
loss = sess.run(cost, feed_dict={x: batch_x, y: batch_y,
seqlen: batch_seqlen})
print("Iter " + str(step*batch_size) + ", Minibatch Loss= " +
"{:.6f}".format(loss) + ", Training Accuracy= " +
"{:.5f}".format(acc))
step += 1
print("Optimization Finished!")
# 最终,我们在测试集上计算一次准确度
test_data = testset.data
test_label = testset.labels
test_seqlen = testset.seqlen
print("Testing Accuracy:", sess.run(accuracy, feed_dict={x: test_data, y: test_label, seqlen: test_seqlen}))