- Python 爬虫实战案例 - 获取BOSS直聘网招聘职位信息
西攻城狮北
python爬虫BOSS直聘招聘信息
引言在当今竞争激烈的职场环境中,无论是求职者渴望找到理想工作,还是企业力求招揽优秀人才,精准、及时的招聘信息都至关重要。BOSS直聘作为国内知名的在线招聘平台,汇聚了海量的职位资源,涵盖各行各业、各个层级。对于求职者,这里宛如一座蕴藏无限机会的宝库,能助其快速锚定契合自身发展的岗位;对于企业,它则是发现千里马的优质猎场,可精准匹配所需人才。而Python爬虫技术恰似一把神奇钥匙,能开启这座宝库的大
- Mamba架构深度解析:基于状态空间模型的线性复杂度序列处理实战指南(附代码+案例
燃灯工作室
Ai架构
一、技术原理:状态空间模型与线性复杂度数学推导1.传统状态空间模型(SSM)连续系统描述:h′(t)=Ah(t)+Bx(t)y(t)=Ch(t)+Dx(t)\begin{aligned}h'(t)&=Ah(t)+Bx(t)\\y(t)&=Ch(t)+Dx(t)\end{aligned}h′(t)y(t)=Ah(t)+Bx(t)=Ch(t)+Dx(t)离散化后(零阶保持法):hk=Aˉhk−1+Bˉ
- 论文解读(全头皮重建方向):3DCMM
FLOWVERSE
3d3D人头补全
从面部到完整头部:3DCMM的技术原理解析引言在计算机图形学和人体工学领域,3D头部模型的需求日益增加。无论是虚拟化身的创建还是头盔的个性化设计,仅有面部模型往往不足以满足要求,完整的头部几何(包括头皮)才是关键。传统的3D可变形模型(3DMM)多集中于面部重建,头皮区域因数据稀缺和技术限制常被忽略。2022年发表于VRCAI’22的论文《3DCMM:3DComprehensiveMorphabl
- Nginx + ElasticSearch + Kibana结合
周天祥
ElasticSearch大数据
Nginx+ElasticSearch+Kibana结合操作系统软件下载安装编译工具及库文件安装PCRE安装NginxElasticSearch配置Kibana配置Nginx配置启动Nginx对人工智能感兴趣点下面链接现在人工智能非常火爆,很多朋友都想学,但是一般的教程都是为博硕生准备的,太难看懂了。最近发现了一个非常适合小白入门的教程,不仅通俗易懂而且还很风趣幽默。所以忍不住分享一下给大家。点这
- DeepSeek技术解析:降本增效的“双刃剑”如何重塑AI产业?
爱吃青菜的大力水手
人工智能
DeepSeek技术解析:降本增效的“双刃剑”如何重塑AI产业?正面影响分析算力需求与成本大幅降低DeepSeek通过算法优化(如稀疏计算、知识蒸馏)和模型压缩技术,将云端训练算力需求降至传统大模型的35%,车端推理芯片需求减少至65%。例如,某车企使用高通8650平台后,智驾系统成本显著下降。这种优化使得中小企业能以更低成本部署AI,甚至支持本地化私有化部署(如金融行业案例),同时减少对英伟达高
- DeepSeek:突破闭源封锁,引领大模型新时代
fanstinmsl
算法语言模型
近年来,人工智能领域蓬勃发展,大模型作为其中的核心技术,其重要性不言而喻。然而,大模型的训练和部署往往面临着硬件依赖性强、成本高昂、效率低下等挑战。DeepSeek的出现,为解决这些问题提供了全新的思路和方案。DeepSeek的核心优势:1.减少硬件依赖:DeepSeek通过算法优化和架构创新,降低了对高性能硬件的依赖,使得大模型的训练和部署可以在更广泛的硬件平台上进行,极大地降低了应用门槛。**
- 简单搞定数仓搭建:数仓规范
白枭
大数据开发数仓hive
1.数据模型架构规范1.1数据层次的划分ODS:OperationalDataStore,操作数据层,在结构上其与源系统的增量或者全量数据基本保持一致。它相当于DW数据的一个数据准备区,同时又承担着基础数据的记录以及历史变化。其主要作用是把基础数据引入到DMP。CDM:CommonDataModel,公共维度模型层,又细分为DWD和DWS。它的主要作用是完成数据加工与整合,建立一致性的维度,构建可
- 大模型学习路线与资源推荐
数字化转型2025
AI投资人工智能
以下是基于多篇参考资料整理的大模型学习路线,涵盖从基础到进阶的完整学习路径,帮助您系统掌握大模型核心技术并应用于实际场景:一、基础阶段:构建核心知识体系编程与数学基础编程语言:优先学习Python,掌握其语法、数据结构及常用库(如NumPy、Pandas、PyTorch)37。数学基础:线性代数、概率论与统计学、微积分是理解模型原理的基石,需重点掌握矩阵运算、概率分布等概念39。深度学习入门神经网
- 单片机程序的模块化设计
_祥子@
单片机嵌入式硬件
单片机程序的模块化设计是提高代码可维护性、可复用性和可扩展性的关键方法。以下是实现模块化的具体方法,结合技术要点和实际案例说明:1.功能拆分与模块划分原则:按功能或硬件外设划分独立模块(如LED、按键、UART、ADC等)。案例://模块示例:LED驱动模块//led.h#ifndefLED_H#defineLED_HvoidLED_Init(void);voidLED_Toggle(uint8_
- 单片机程序的分层设计方法
_祥子@
单片机嵌入式硬件
分层设计是单片机程序模块化的核心方法之一,通过将不同职责的代码分离到不同层次,能够显著提升代码的可维护性、可移植性和可扩展性。以下是分层设计的具体方法、实现步骤和实际案例:1.分层设计的核心思想目标:将代码按抽象级别分层,每一层只关注特定职责,上层依赖下层接口,但不依赖具体实现。优势:降低耦合:修改底层硬件时,上层业务逻辑无需改动。提高复用:同一驱动层可适配不同硬件(如STM32和ESP32)。简
- 刷力扣的技巧:4 个步骤 7 个关键点,事半功倍,冲进大厂!
后端go数据库算法力扣
最近好多人问我咋刷力扣呀,今天我就来给大家好好唠唠。我总结了7个要点和4个步骤,尤其是最后那提效4步骤,可太有用啦。大家一定要看到最后哦,记得点赞、收藏呀。要点一:别光追求刷题量,题解也得看咱好多同学呀,解开一道题就着急忙慌地去刷下一道,还把刷题数量当成衡量水平的唯一标准。就像有的同学跟我说:“阳哥,我在Leetcode刷了500题,去面腾讯有戏不?”结果咋样,还不是挂了。其实呀,咱不能光闷头刷,
- MongoDB副本集与分片综合应用
李明一.
mongodb数据库
一、MongoDB副本集1.1、MongoDB复制在mongodb学习阶段,一般用的都是单台服务器,一个mongod服务进程。如果仅仅作为学习开发是可以的,但是如果用到生产环境,风险会很高,例如服务器崩溃、硬件出现问题,最坏的情况是磁盘或网络出问题可能会导致数损坏或数据不可访问。MongoDB复制是将数据同步在多个服务器的过程。复制提供了数据的冗余备份,并在多个服务器上存储数据副本,提高了数据的可
- 如何通过提示词更好地利用AI
lally.
人工智能
如何通过提示词工程释放AI的全部潜力:7个深度优化技巧前言:为什么提示词决定AI的输出质量?在人工智能对话系统的使用中,提示词(Prompt)就像开启宝藏的密码钥匙。研究表明,优化后的提示词可使输出质量提升300%(AIResearchLab,2023)。本指南将系统解析提示词设计的核心方法论,并提供可直接复用的模板库。一、基础构建:打造高效提示词的4大支柱1.1精准目标定位术原理分析:模糊指令导
- CSS 真的会阻塞文档解析吗?从浏览器渲染原理深入探究一下
银之夏雪
css前端浏览器浏览器渲染
在网页开发领域,一个常见的疑问是CSS是否会阻塞文档解析。理解这一问题对于优化网页性能、提升用户体验至关重要。要深入解答这个问题,需要从浏览器渲染网页的原理说起。浏览器渲染网页的基本流程浏览器在接收到HTML文档后,会依次进行以下几个主要步骤:解析HTML:浏览器从网络或本地获取HTML文件,然后开始解析,将HTML代码转换为DOM(DocumentObjectModel,文档对象模型)树。DOM
- 告别 `if - else`:策略模式与 `return` 语句的深度解析与应用
银之夏雪丶
策略模式javascript前端reactjsvue.jsreact.js
一、引言在编程领域,if-else语句我们再熟悉不过了。它简单易用,是构建程序逻辑的常用方式。可一旦业务变得复杂起来,大量嵌套的if-else代码就会像乱麻一样,把代码的可读性、可维护性和扩展性都搞得一团糟。本文就来好好讲讲怎么用策略模式和合理运用return语句,把代码从这团乱麻里解救出来,让代码结构更清晰、更高效。二、return语句:简化if-else的得力助手(一)代码瘦身与逻辑明晰当if
- 机器学习与深度学习在辣椒病虫害识别中的集成分析(实验室环境)
@@南风
农作物病害识别与分类深度学习机器学习神经网络
Abstract背景:辣椒是世界上最重要的高价值蔬菜作物之一。然而,虫害和疾病感染是辣椒种植的主要限制因素。这些疾病无法根除,但可以加以处理和监测,以减轻损害。因此,采用基于图像的自动识别系统将有助于快速识别辣椒病害。从图像中提取的特征对于开发这样一个精确的识别系统至关重要。结果:本研究将传统方法提取的辣椒病虫害特征与基于深度学习方法提取的特征进行了比较。***共采集辣椒叶片图像974张,由5种病
- matlab iri模型,IRI2012电离层模型 matlab代码
龙之吻(水货)
matlabiri模型
【实例简介】IRI2012电离层模型InternationalReferenceIonosphere(IRI)ModelComputestheInternationalReferenceIonosphere(IRI),whichisaninternationallyrecognizedmodelforvariousionosphericproperties.Iwouldcallitmoreofah
- Anaconda 2025 最新版安装与Python环境配置指南(附官方下载链接)
waicsdn_haha
程序员教程pythonlinuxjupyterfpga开发javawindows
一、软件定位与核心功能Anaconda2025是Python/R数据科学集成开发平台,预装1500+科学计算库,新增AI模型可视化调试、多环境GPU加速等特性。相较于传统Python安装,其优势包括:环境隔离:通过conda工具实现多版本Python环境共存包管理:一键安装NumPy/Pandas/Scikit-learn等工具链跨平台支持:Windows/macOS/Linux统一操作逻辑二、安
- python 语音转文本中文——DeepSpeech
drebander
python开发语言DeepSpeech
DeepSpeech简介与音频转文本实践DeepSpeech是由Mozilla开发的一种开源语音识别引擎,基于深度学习技术,采用端到端架构,可以高效地将语音转换为文本。其核心算法受BaiduDeepSpeech论文启发,使用RecurrentNeuralNetwork(RNN)处理语音数据。一、DeepSpeech的原理1.核心组件声学模型:将语音波形转换为概率分布表示。语言模型:对语音识别结果进
- 自己搭建远程桌面服务器-RustDesk(小白版),借花献佛
嘻嘻哈哈学编程
2024年程序员学习服务器运维
如果想使用内网穿透,我建议使用花生壳、NAT123(早些年非常好用、现在弄得特别复杂)自己有服务器,穿透可使用RustDesk、frp本人目前使用为RustDesk、向日葵混合使用。4.准备内容①一个公网服务器(可装Centos7.6或Windows系统)建议使用Centos可以命令部署如果没有服务器,可自行到腾讯云、阿里云申请(一般都会有活动什么年终、双十一、双十二等等,价格不贵,便宜的100多
- Matlab编写的直齿轮时变啮合刚度求解模型程序及拟合公式详解
UcbSSHqp
matlab算法机器学习
Matlab:势能法-编写的关于直齿轮时变啮合刚度求解模型程序(齿间摩檫力也有考虑进去),根据周期变化计算得到整个啮合过程的综合刚度啮合曲线,并得到拟合公式,以便在建立动力学方程的时候方便使用!内含详细解答YID:32226703787699990雪梅224aMatlab:势能法-编写的关于直齿轮时变啮合刚度求解模型程序摘要:本文基于Matlab编写了一个关于直齿轮时变啮合刚度求解的模型程序,该程
- CSS对DOM解析的阻塞作用
MggnHaskell
css前端DOM
CSS(层叠样式表)是用于定义网页元素外观和样式的语言。它与HTML(超文本标记语言)一起构成了Web页面的核心构建块。在浏览器渲染页面时,DOM(文档对象模型)树的构建和渲染是一个重要的过程。在这个过程中,CSS可能会对DOM解析产生一定的阻塞作用。当浏览器解析HTML文档时,它会构建DOM树,这是一个表示文档结构的树形结构。这个过程是逐步进行的,浏览器从上到下逐行读取HTML文档,并将每个元素
- [C++]使用纯opencv部署yolov12目标检测onnx模型
FL1623863129
深度学习c++opencvYOLO
yolov12官方框架:sunsmarterjie/yolov12【算法介绍】在C++中使用纯OpenCV部署YOLOv12进行目标检测是一项具有挑战性的任务,因为YOLOv12通常是用PyTorch等深度学习框架实现的,而OpenCV本身并不直接支持加载和运行PyTorch模型。然而,你可以通过一些间接的方法来实现这一目标,比如将PyTorch模型转换为ONNX格式,然后使用OpenCV的DNN
- 基于势能法和切片法的斜齿轮时变啮合刚度求解模型的Matlab程序设计及综合刚度曲线拟合公式解析
AbVhftfAZW
matlab人工智能算法
Matlab技术在斜齿轮时变啮合刚度求解模型中的应用分析一、引言在工程技术领域,斜齿轮作为高效传动的重要部件,其啮合刚度的准确计算对于提升传动性能、确保设备运行稳定至关重要。本文将围绕Matlab编程技术在斜齿轮时变啮合刚度求解模型中的应用展开讨论,特别是通过势能法和切片法相结合的方式编写Matlab程序,以满足工程实际需求。二、时变啮合刚度求解模型概述斜齿轮的时变啮合刚度求解模型是一个复杂的多物
- 梯度累加(结合DDP)梯度检查点
糖葫芦君
LLM算法人工智能大模型深度学习
梯度累加目的梯度累积是一种训练神经网络的技术,主要用于在内存有限的情况下处理较大的批量大小(batchsize)。通常,较大的批量可以提高训练的稳定性和效率,但受限于GPU或TPU的内存,无法一次性加载大批量数据。梯度累积通过多次前向传播和反向传播累积梯度,然后一次性更新模型参数,从而模拟大批量训练的效果。总结:显存限制:GPU/TPU显存有限,无法一次性加载大批量数据。训练稳定性:大批量训练通常
- 支持向量机(Support Vector Machine,SVM)
不易撞的网名
支持向量机算法机器学习
支持向量机(SupportVectorMachine,简称SVM)是一种监督学习模型,主要用于分类和回归分析。SVM的基本思想是寻找一个决策边界或超平面,使得两类样本之间的间隔最大化。这个间隔被定义为支持向量到超平面的最短距离,而支持向量就是那些恰好位于间隔边缘上的训练样本点。线性可分情况下的SVM假设我们有一组训练数据(x1,y1),(x2,y2),…,(xn,yn)(x_1,y_1),(x_2
- DeepSeek强化学习(Reinforcement Learning)基础与实践
Evaporator Core
强化学习#DeepSeek快速入门人工智能python数据库tornado强化学习deepseek
引言强化学习(ReinforcementLearning,RL)是机器学习的一个重要分支,专注于训练智能体(Agent)在环境中通过试错来学习最优策略。与监督学习和无监督学习不同,强化学习通过奖励信号来指导智能体的行为,使其能够在复杂的环境中做出决策。DeepSeek提供了强大的工具和API,帮助我们高效地构建和训练强化学习模型。本文将详细介绍如何使用DeepSeek进行强化学习的基础与实践,并通
- OpenAI 助力数据分析中的模式识别与趋势预测
山海青风
#OpenAI数据分析信息可视化数据挖掘
数据分析师的日常工作中,发现数据中的隐藏模式和预测未来趋势是非常重要的一环。借助OpenAI的强大语言模型(如GPT-4),我们可以轻松完成这些任务,无需深厚的编程基础,也能快速上手。在本文中,我们将通过一个简单的例子,展示如何利用OpenAI模型帮助数据分析师识别模式和预测趋势,尤其是在时间序列预测(如销售、流量等)中的实际应用,并加入数据可视化来更直观地展示分析结果。一、模式识别与趋势预测的重
- 项目管理的数字化转型:趋势与实践——从工具革新到效率革命
小稻草打打打
Prince项目管理Prince敏捷开发项目管理
在数字化浪潮的推动下,项目管理正经历一场深刻的变革。传统依赖人工协调、纸质文档和静态计划的管理方式已无法应对日益复杂的项目需求。据统计,采用数字化工具的项目团队效率可提升40%以上,成本超支风险降低30%。本文将深入解析项目管理数字化转型的五大核心趋势,结合真实案例与工具应用,为读者提供可落地的实践指南。一、数字化转型的五大核心趋势1.虚拟团队与协作工具的常态化远程协作已成为项目管理的主流模式。通
- 无人机实战系列(二)本地摄像头 + Depth-Anything V2
nenchoumi3119
无人机实战无人机
这篇文章介绍了如何在本地运行Depth-AnythingV2,因为我使用的无人机是Tello,其本身仅提供了一个单目视觉相机,在众多单目视觉转Depth的方案中我选择了Depth-AnythingV2,这个库的强大在于其基于深度学习模型将单目视觉以较低的代价转换成RGBD图像,可以用来无人机避障与SLAM。Step1.拉取Depth-AnythingV2源码与模型下载官方仓库提供了两种方式调用De
- 怎么样才能成为专业的程序员?
cocos2d-x小菜
编程PHP
如何要想成为一名专业的程序员?仅仅会写代码是不够的。从团队合作去解决问题到版本控制,你还得具备其他关键技能的工具包。当我们询问相关的专业开发人员,那些必备的关键技能都是什么的时候,下面是我们了解到的情况。
关于如何学习代码,各种声音很多,然后很多人就被误导为成为专业开发人员懂得一门编程语言就够了?!呵呵,就像其他工作一样,光会一个技能那是远远不够的。如果你想要成为
- java web开发 高并发处理
BreakingBad
javaWeb并发开发处理高
java处理高并发高负载类网站中数据库的设计方法(java教程,java处理大量数据,java高负载数据) 一:高并发高负载类网站关注点之数据库 没错,首先是数据库,这是大多数应用所面临的首个SPOF。尤其是Web2.0的应用,数据库的响应是首先要解决的。 一般来说MySQL是最常用的,可能最初是一个mysql主机,当数据增加到100万以上,那么,MySQL的效能急剧下降。常用的优化措施是M-S(
- mysql批量更新
ekian
mysql
mysql更新优化:
一版的更新的话都是采用update set的方式,但是如果需要批量更新的话,只能for循环的执行更新。或者采用executeBatch的方式,执行更新。无论哪种方式,性能都不见得多好。
三千多条的更新,需要3分多钟。
查询了批量更新的优化,有说replace into的方式,即:
replace into tableName(id,status) values
- 微软BI(3)
18289753290
微软BI SSIS
1)
Q:该列违反了完整性约束错误;已获得 OLE DB 记录。源:“Microsoft SQL Server Native Client 11.0” Hresult: 0x80004005 说明:“不能将值 NULL 插入列 'FZCHID',表 'JRB_EnterpriseCredit.dbo.QYFZCH';列不允许有 Null 值。INSERT 失败。”。
A:一般这类问题的存在是
- Java中的List
g21121
java
List是一个有序的 collection(也称为序列)。此接口的用户可以对列表中每个元素的插入位置进行精确地控制。用户可以根据元素的整数索引(在列表中的位置)访问元素,并搜索列表中的元素。
与 set 不同,列表通常允许重复
- 读书笔记
永夜-极光
读书笔记
1. K是一家加工厂,需要采购原材料,有A,B,C,D 4家供应商,其中A给出的价格最低,性价比最高,那么假如你是这家企业的采购经理,你会如何决策?
传统决策: A:100%订单 B,C,D:0%
&nbs
- centos 安装 Codeblocks
随便小屋
codeblocks
1.安装gcc,需要c和c++两部分,默认安装下,CentOS不安装编译器的,在终端输入以下命令即可yum install gccyum install gcc-c++
2.安装gtk2-devel,因为默认已经安装了正式产品需要的支持库,但是没有安装开发所需要的文档.yum install gtk2*
3. 安装wxGTK
yum search w
- 23种设计模式的形象比喻
aijuans
设计模式
1、ABSTRACT FACTORY—追MM少不了请吃饭了,麦当劳的鸡翅和肯德基的鸡翅都是MM爱吃的东西,虽然口味有所不同,但不管你带MM去麦当劳或肯德基,只管向服务员说“来四个鸡翅”就行了。麦当劳和肯德基就是生产鸡翅的Factory 工厂模式:客户类和工厂类分开。消费者任何时候需要某种产品,只需向工厂请求即可。消费者无须修改就可以接纳新产品。缺点是当产品修改时,工厂类也要做相应的修改。如:
- 开发管理 CheckLists
aoyouzi
开发管理 CheckLists
开发管理 CheckLists(23) -使项目组度过完整的生命周期
开发管理 CheckLists(22) -组织项目资源
开发管理 CheckLists(21) -控制项目的范围开发管理 CheckLists(20) -项目利益相关者责任开发管理 CheckLists(19) -选择合适的团队成员开发管理 CheckLists(18) -敏捷开发 Scrum Master 工作开发管理 C
- js实现切换
百合不是茶
JavaScript栏目切换
js主要功能之一就是实现页面的特效,窗体的切换可以减少页面的大小,被门户网站大量应用思路:
1,先将要显示的设置为display:bisible 否则设为none
2,设置栏目的id ,js获取栏目的id,如果id为Null就设置为显示
3,判断js获取的id名字;再设置是否显示
代码实现:
html代码:
<di
- 周鸿祎在360新员工入职培训上的讲话
bijian1013
感悟项目管理人生职场
这篇文章也是最近偶尔看到的,考虑到原博客发布者可能将其删除等原因,也更方便个人查找,特将原文拷贝再发布的。“学东西是为自己的,不要整天以混的姿态来跟公司博弈,就算是混,我觉得你要是能在混的时间里,收获一些别的有利于人生发展的东西,也是不错的,看你怎么把握了”,看了之后,对这句话记忆犹新。 &
- 前端Web开发的页面效果
Bill_chen
htmlWebMicrosoft
1.IE6下png图片的透明显示:
<img src="图片地址" border="0" style="Filter.Alpha(Opacity)=数值(100),style=数值(3)"/>
或在<head></head>间加一段JS代码让透明png图片正常显示。
2.<li>标
- 【JVM五】老年代垃圾回收:并发标记清理GC(CMS GC)
bit1129
垃圾回收
CMS概述
并发标记清理垃圾回收(Concurrent Mark and Sweep GC)算法的主要目标是在GC过程中,减少暂停用户线程的次数以及在不得不暂停用户线程的请夸功能,尽可能短的暂停用户线程的时间。这对于交互式应用,比如web应用来说,是非常重要的。
CMS垃圾回收针对新生代和老年代采用不同的策略。相比同吞吐量垃圾回收,它要复杂的多。吞吐量垃圾回收在执
- Struts2技术总结
白糖_
struts2
必备jar文件
早在struts2.0.*的时候,struts2的必备jar包需要如下几个:
commons-logging-*.jar Apache旗下commons项目的log日志包
freemarker-*.jar  
- Jquery easyui layout应用注意事项
bozch
jquery浏览器easyuilayout
在jquery easyui中提供了easyui-layout布局,他的布局比较局限,类似java中GUI的border布局。下面对其使用注意事项作简要介绍:
如果在现有的工程中前台界面均应用了jquery easyui,那么在布局的时候最好应用jquery eaysui的layout布局,否则在表单页面(编辑、查看、添加等等)在不同的浏览器会出
- java-拷贝特殊链表:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
bylijinnan
java
public class CopySpecialLinkedList {
/**
* 题目:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
拷贝pNext指针非常容易,所以题目的难点是如何拷贝pRand指针。
假设原来链表为A1 -> A2 ->... -> An,新拷贝
- color
Chen.H
JavaScripthtmlcss
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <HTML> <HEAD>&nbs
- [信息与战争]移动通讯与网络
comsci
网络
两个坚持:手机的电池必须可以取下来
光纤不能够入户,只能够到楼宇
建议大家找这本书看看:<&
- oracle flashback query(闪回查询)
daizj
oracleflashback queryflashback table
在Oracle 10g中,Flash back家族分为以下成员:
Flashback Database
Flashback Drop
Flashback Table
Flashback Query(分Flashback Query,Flashback Version Query,Flashback Transaction Query)
下面介绍一下Flashback Drop 和Flas
- zeus持久层DAO单元测试
deng520159
单元测试
zeus代码测试正紧张进行中,但由于工作比较忙,但速度比较慢.现在已经完成读写分离单元测试了,现在把几种情况单元测试的例子发出来,希望有人能进出意见,让它走下去.
本文是zeus的dao单元测试:
1.单元测试直接上代码
package com.dengliang.zeus.webdemo.test;
import org.junit.Test;
import o
- C语言学习三printf函数和scanf函数学习
dcj3sjt126com
cprintfscanflanguage
printf函数
/*
2013年3月10日20:42:32
地点:北京潘家园
功能:
目的:
测试%x %X %#x %#X的用法
*/
# include <stdio.h>
int main(void)
{
printf("哈哈!\n"); // \n表示换行
int i = 10;
printf
- 那你为什么小时候不好好读书?
dcj3sjt126com
life
dady, 我今天捡到了十块钱, 不过我还给那个人了
good girl! 那个人有没有和你讲thank you啊
没有啦....他拉我的耳朵我才把钱还给他的, 他哪里会和我讲thank you
爸爸, 如果地上有一张5块一张10块你拿哪一张呢....
当然是拿十块的咯...
爸爸你很笨的, 你不会两张都拿
爸爸为什么上个月那个人来跟你讨钱, 你告诉他没
- iptables开放端口
Fanyucai
linuxiptables端口
1,找到配置文件
vi /etc/sysconfig/iptables
2,添加端口开放,增加一行,开放18081端口
-A INPUT -m state --state NEW -m tcp -p tcp --dport 18081 -j ACCEPT
3,保存
ESC
:wq!
4,重启服务
service iptables
- Ehcache(05)——缓存的查询
234390216
排序ehcache统计query
缓存的查询
目录
1. 使Cache可查询
1.1 基于Xml配置
1.2 基于代码的配置
2 指定可搜索的属性
2.1 可查询属性类型
2.2 &
- 通过hashset找到数组中重复的元素
jackyrong
hashset
如何在hashset中快速找到重复的元素呢?方法很多,下面是其中一个办法:
int[] array = {1,1,2,3,4,5,6,7,8,8};
Set<Integer> set = new HashSet<Integer>();
for(int i = 0
- 使用ajax和window.history.pushState无刷新改变页面内容和地址栏URL
lanrikey
history
后退时关闭当前页面
<script type="text/javascript">
jQuery(document).ready(function ($) {
if (window.history && window.history.pushState) {
- 应用程序的通信成本
netkiller.github.com
虚拟机应用服务器陈景峰netkillerneo
应用程序的通信成本
什么是通信
一个程序中两个以上功能相互传递信号或数据叫做通信。
什么是成本
这是是指时间成本与空间成本。 时间就是传递数据所花费的时间。空间是指传递过程耗费容量大小。
都有哪些通信方式
全局变量
线程间通信
共享内存
共享文件
管道
Socket
硬件(串口,USB) 等等
全局变量
全局变量是成本最低通信方法,通过设置
- 一维数组与二维数组的声明与定义
恋洁e生
二维数组一维数组定义声明初始化
/** * */ package test20111005; /** * @author FlyingFire * @date:2011-11-18 上午04:33:36 * @author :代码整理 * @introduce :一维数组与二维数组的初始化 *summary: */ public c
- Spring Mybatis独立事务配置
toknowme
mybatis
在项目中有很多地方会使用到独立事务,下面以获取主键为例
(1)修改配置文件spring-mybatis.xml <!-- 开启事务支持 --> <tx:annotation-driven transaction-manager="transactionManager" /> &n
- 更新Anadroid SDK Tooks之后,Eclipse提示No update were found
xp9802
eclipse
使用Android SDK Manager 更新了Anadroid SDK Tooks 之后,
打开eclipse提示 This Android SDK requires Android Developer Toolkit version 23.0.0 or above, 点击Check for Updates
检测一会后提示 No update were found