先验概率:指的是事件发生前的预判概率,可以根据历史数据/经验估算得到。例如,当我们需要判断西瓜是不是好瓜的时候,对纹理、根蒂等特征都不了解,只是平常我们买西瓜的时候买到好瓜的概率是70%,那么这个西瓜是好瓜的概率我们也可以认为是70%。这个概率70%就是先验概率。
后验概率:指的是事件发生后求的反向条件概率。例如,当我们买西瓜的时候,已经知道当西瓜脐部凹陷的时候,是好瓜的概率是80%。如果把脐部凹陷当作一种结果,然后去推测好瓜的概率,那么这个概率P(好瓜|纹理清晰)就是后验概率。
联合概率:指的是包含多个条件,且所有条件同时成立的概率,记作P(A,B)。
相互独立:如果P(A,B)=P(A)·P(B),则称事件A和事件B相互独立
朴素贝叶斯算法是以贝叶斯定理为基础的一种分类方法,之所以称为 “朴素” ,是假定所有输入事件之间是相互独立的。这是为了简便计算,独立事件间的概率计算更加简单。
对于给出的待分类样本,求解在此样本出现的条件下各个类别出现的概率,哪个概率最大,就认为此待分类样本属于哪个类别。
例子:当我们挑选西瓜的时候,通过西瓜的敲击声来判断西瓜的好坏,假设敲击声是“浊响”的西瓜是好瓜的概率是70%,敲击声是“沉闷”的概率是50%,敲击声是“清脆”的概率是10%,那么这个西瓜的敲击声是“浊响”,我们就认为这个西瓜是个好瓜。
数据集说明:非垃圾邮件ham和垃圾邮件spam各25封,测试邮件5封,其中把spam中的1、2和ham中的22、23、24拿出来当测试集
ham:
ham的其中一封:
导包:
import os
import re
import string
import math
import numpy as np
数据预处理:
def get_filtered_str(category):
email_list = []
translator = re.compile('[%s]' % re.escape(string.punctuation))
for curDir, dirs, files in os.walk(f'./email/{category}'):
for file in files:
file_name = os.path.join(curDir, file)
with open(file_name, 'r', encoding='utf-8') as f:
txt_str = f.read()
# 全部小写
txt_str = txt_str.lower()
# 过滤掉所有符号
txt_str = translator.sub(' ', txt_str)
# 过滤掉全部数字
txt_str = replace_num(txt_str)
# 把全体的邮件文本 根据换行符把string划分成列表
txt_str_list = txt_str.splitlines()
# 把获取的全体单词句子列表转成字符串
txt_str = ''.join(txt_str_list)
# print(txt_str)
email_list.append(txt_str)
return email_list
数据处理阶段:
def get_dict_spam_dict_w(spam_email_list):
'''
:param email_list: 每个邮件过滤后形成字符串,存入email_list
:param all_email_words: 列表。把所有的邮件内容,分词。一个邮件的词 是它的一个列表元素
:return:
'''
all_email_words = []
# 用set集合去重
word_set = set()
for email_str in spam_email_list:
# 把每个邮件的文本 变成单词
email_words = email_str.split(' ')
# 把每个邮件去重后的列表 存入列表
all_email_words.append(email_words)
for word in email_words:
if(word!=''):
word_set.add(word)
# 计算每个垃圾词出现的次数
word_dict = {}
for word in word_set:
# 创建字典元素 并让它的值为1
word_dict[word] = 0
# print(f'word={word}')
# 遍历每个邮件,看文本里面是否有该单词,匹配方法不能用正则.邮件里面也必须是分词去重后的!!! 否则 比如出现re是特征, 那么remind 也会被匹配成re
for email_words in all_email_words:
for email_word in email_words:
# print(f'spam_email={email_word}')
# 把从set中取出的word 和 每个email分词后的word对比看是否相等
if(word==email_word):
word_dict[word] += 1
# 找到一个就行了
break
# 计算垃圾词的概率
# spam_len = len(os.listdir(f'./email/spam'))
# print(f'spam_len={spam_len}')
# for word in word_dict:
# word_dict[word] = word_dict[word] / spam_len
return word_dict
def get_dict_ham_dict_w(spam_email_list,ham_email_list):
'''
:param email_list: 每个邮件过滤后形成字符串,存入email_list
:param all_email_words: 列表。把所有的邮件内容,分词。一个邮件的词 是它的一个列表元素
:return:
'''
all_ham_email_words = []
# 用set集合去重 得到垃圾邮件的特征w
word_set = set()
#获取垃圾邮件特征
for email_str in spam_email_list:
# 把每个邮件的文本 变成单词
email_words = email_str.split(' ')
for word in email_words:
if (word != ''):
word_set.add(word)
for ham_email_str in ham_email_list:
# 把每个邮件的文本 变成单词
ham_email_words = ham_email_str.split(' ')
# print(f'ham_email_words={ham_email_words}')
# 把每个邮件分割成单词的 的列表 存入列表
all_ham_email_words.append(ham_email_words)
# print(f'all_ham_email_words={all_ham_email_words}')
# 计算每个垃圾词出现的次数
word_dict = {}
for word in word_set:
# 创建字典元素 并让它的值为1
word_dict[word] = 0
# print(f'word={word}')
# 遍历每个邮件,看文本里面是否有该单词,匹配方法不能用正则.邮件里面也必须是分词去重后的!!! 否则 比如出现re是特征, 那么remind 也会被匹配成re
for email_words in all_ham_email_words:
# print(f'ham_email_words={email_words}')
for email_word in email_words:
# 把从set中取出的word 和 每个email分词后的word对比看是否相等
# print(f'email_word={email_word}')
if(word==email_word):
word_dict[word] += 1
# 找到一个就行了
break
return word_dict
# 获取测试邮件中出现的 垃圾邮件特征
def get_X_c1(spam_w_dict,file_name):
# 获取测试邮件
# file_name = './email/spam/25.txt'
# 过滤文本
translator = re.compile('[%s]' % re.escape(string.punctuation))
with open(file_name, 'r', encoding='utf-8') as f:
txt_str = f.read()
# 全部小写
txt_str = txt_str.lower()
# 过滤掉所有符号
txt_str = translator.sub(' ', txt_str)
# 过滤掉全部数字
txt_str = replace_num(txt_str)
# 把全体的邮件文本 根据换行符把string划分成列表
txt_str_list = txt_str.splitlines()
# 把获取的全体单词句子列表转成字符串
txt_str = ''.join(txt_str_list)
# 把句子分成词
email_words = txt_str.split(' ')
# 去重
x_set = set()
for word in email_words:
if word!='':
x_set.add(word)
# print(f'\ntest_x_set={x_set}')
spam_len = len(os.listdir(f'./email/spam'))
# 判断测试邮件的词有哪些是垃圾邮件的特征
spam_X_num = []
for xi in x_set:
for wi in spam_w_dict:
if xi == wi:
spam_X_num.append(spam_w_dict[wi])
# print(f'\nspam_X_num={spam_X_num}')
w_appear_sum_num = 1
for num in spam_X_num:
w_appear_sum_num += num
# print(f'\nham_w_appear_sum_num={w_appear_sum_num}')
# 求概率
w_c1_p = w_appear_sum_num / (spam_len + 2)
return w_c1_p
# 获取测试邮件中出现的非垃圾邮件特征
def get_X_c2(ham_w_dict,file_name):
# 过滤文本
translator = re.compile('[%s]' % re.escape(string.punctuation))
with open(file_name, 'r', encoding='utf-8') as f:
txt_str = f.read()
# 全部小写
txt_str = txt_str.lower()
# 过滤掉所有符号
txt_str = translator.sub(' ', txt_str)
# 过滤掉全部数字
txt_str = replace_num(txt_str)
# 把全体的邮件文本 根据换行符把string划分成列表
txt_str_list = txt_str.splitlines()
# 把获取的全体单词句子列表转成字符串
txt_str = ''.join(txt_str_list)
# 把句子分成词
email_words = txt_str.split(' ')
# 去重
x_set = set()
for word in email_words:
if word!='':
x_set.add(word)
# print(f'\ntest_x_set={x_set}')
# 判断测试邮件的词有哪些是垃圾邮件的特征
ham_X_num = []
for xi in x_set:
for wi in ham_w_dict:
if xi == wi:
ham_X_num.append(ham_w_dict[wi])
# print(f'\nham_X_num={ham_X_num}')
# 先求分子 所有词出现的总和
ham_len = len(os.listdir(f'./email/ham'))
w_appear_sum_num = 1
for num in ham_X_num:
w_appear_sum_num += num
# print(f'\nspam_w_appear_sum_num={w_appear_sum_num}')
# 求概率
w_c2_p = w_appear_sum_num / (ham_len+2)
return w_c2_p
测试阶段:
def email_test(spam_w_dict,ham_w_dict):
for curDir, dirs, files in os.walk(f'./email/test'):
for file in files:
file_name = os.path.join(curDir, file)
print('---------------------------------------------------------------')
print(f'测试邮件: {file}')
# 获取条件概率 p(X|c1)
p_X_c1 = get_X_c1(spam_w_dict,file_name)
# 获取条件概率 p(X|c2)
p_X_c2 = get_X_c2(ham_w_dict,file_name)
# print(f'\nX_c1={p_X_c1}')
# print(f'\nX_c2={p_X_c2}')
# #注意:Log之后全部变为负数
A = np.log(p_X_c1) + np.log(1 / 2)
B = np.log(p_X_c2) + np.log(1 / 2)
# 除法会出现问题,-1 / 负分母 结果 < -2/同一个分母
print(f'p1={A},p2={B}')
# 因为分母一致,所以只比较 分子即可
if A > B:
print('p1>p2,所以是垃圾邮件.')
if A <= B:
print('p1)
完整代码:
import os
import re
import string
import math
import numpy as np
# 过滤数字
def replace_num(txt_str):
txt_str = txt_str.replace(r'0', '')
txt_str = txt_str.replace(r'1', '')
txt_str = txt_str.replace(r'2', '')
txt_str = txt_str.replace(r'3', '')
txt_str = txt_str.replace(r'4', '')
txt_str = txt_str.replace(r'5', '')
txt_str = txt_str.replace(r'6', '')
txt_str = txt_str.replace(r'7', '')
txt_str = txt_str.replace(r'8', '')
txt_str = txt_str.replace(r'9', '')
return txt_str
def get_filtered_str(category):
email_list = []
translator = re.compile('[%s]' % re.escape(string.punctuation))
for curDir, dirs, files in os.walk(f'./email/{category}'):
for file in files:
file_name = os.path.join(curDir, file)
with open(file_name, 'r', encoding='utf-8') as f:
txt_str = f.read()
# 全部小写
txt_str = txt_str.lower()
# 过滤掉所有符号
txt_str = translator.sub(' ', txt_str)
# 过滤掉全部数字
txt_str = replace_num(txt_str)
# 把全体的邮件文本 根据换行符把string划分成列表
txt_str_list = txt_str.splitlines()
# 把获取的全体单词句子列表转成字符串
txt_str = ''.join(txt_str_list)
# print(txt_str)
email_list.append(txt_str)
return email_list
def get_dict_spam_dict_w(spam_email_list):
'''
:param email_list: 每个邮件过滤后形成字符串,存入email_list
:param all_email_words: 列表。把所有的邮件内容,分词。一个邮件的词 是它的一个列表元素
:return:
'''
all_email_words = []
# 用set集合去重
word_set = set()
for email_str in spam_email_list:
# 把每个邮件的文本 变成单词
email_words = email_str.split(' ')
# 把每个邮件去重后的列表 存入列表
all_email_words.append(email_words)
for word in email_words:
if(word!=''):
word_set.add(word)
# 计算每个垃圾词出现的次数
word_dict = {}
for word in word_set:
# 创建字典元素 并让它的值为1
word_dict[word] = 0
# print(f'word={word}')
# 遍历每个邮件,看文本里面是否有该单词,匹配方法不能用正则.邮件里面也必须是分词去重后的!!! 否则 比如出现re是特征, 那么remind 也会被匹配成re
for email_words in all_email_words:
for email_word in email_words:
# print(f'spam_email={email_word}')
# 把从set中取出的word 和 每个email分词后的word对比看是否相等
if(word==email_word):
word_dict[word] += 1
# 找到一个就行了
break
# 计算垃圾词的概率
# spam_len = len(os.listdir(f'./email/spam'))
# print(f'spam_len={spam_len}')
# for word in word_dict:
# word_dict[word] = word_dict[word] / spam_len
return word_dict
def get_dict_ham_dict_w(spam_email_list,ham_email_list):
'''
:param email_list: 每个邮件过滤后形成字符串,存入email_list
:param all_email_words: 列表。把所有的邮件内容,分词。一个邮件的词 是它的一个列表元素
:return:
'''
all_ham_email_words = []
# 用set集合去重 得到垃圾邮件的特征w
word_set = set()
#获取垃圾邮件特征
for email_str in spam_email_list:
# 把每个邮件的文本 变成单词
email_words = email_str.split(' ')
for word in email_words:
if (word != ''):
word_set.add(word)
for ham_email_str in ham_email_list:
# 把每个邮件的文本 变成单词
ham_email_words = ham_email_str.split(' ')
# print(f'ham_email_words={ham_email_words}')
# 把每个邮件分割成单词的 的列表 存入列表
all_ham_email_words.append(ham_email_words)
# print(f'all_ham_email_words={all_ham_email_words}')
# 计算每个垃圾词出现的次数
word_dict = {}
for word in word_set:
# 创建字典元素 并让它的值为1
word_dict[word] = 0
# print(f'word={word}')
# 遍历每个邮件,看文本里面是否有该单词,匹配方法不能用正则.邮件里面也必须是分词去重后的!!! 否则 比如出现re是特征, 那么remind 也会被匹配成re
for email_words in all_ham_email_words:
# print(f'ham_email_words={email_words}')
for email_word in email_words:
# 把从set中取出的word 和 每个email分词后的word对比看是否相等
# print(f'email_word={email_word}')
if(word==email_word):
word_dict[word] += 1
# 找到一个就行了
break
return word_dict
# 获取测试邮件中出现的 垃圾邮件特征
def get_X_c1(spam_w_dict,file_name):
# 获取测试邮件
# file_name = './email/spam/25.txt'
# 过滤文本
translator = re.compile('[%s]' % re.escape(string.punctuation))
with open(file_name, 'r', encoding='utf-8') as f:
txt_str = f.read()
# 全部小写
txt_str = txt_str.lower()
# 过滤掉所有符号
txt_str = translator.sub(' ', txt_str)
# 过滤掉全部数字
txt_str = replace_num(txt_str)
# 把全体的邮件文本 根据换行符把string划分成列表
txt_str_list = txt_str.splitlines()
# 把获取的全体单词句子列表转成字符串
txt_str = ''.join(txt_str_list)
# 把句子分成词
email_words = txt_str.split(' ')
# 去重
x_set = set()
for word in email_words:
if word!='':
x_set.add(word)
# print(f'\ntest_x_set={x_set}')
spam_len = len(os.listdir(f'./email/spam'))
# 判断测试邮件的词有哪些是垃圾邮件的特征
spam_X_num = []
for xi in x_set:
for wi in spam_w_dict:
if xi == wi:
spam_X_num.append(spam_w_dict[wi])
# print(f'\nspam_X_num={spam_X_num}')
w_appear_sum_num = 1
for num in spam_X_num:
w_appear_sum_num += num
# print(f'\nham_w_appear_sum_num={w_appear_sum_num}')
# 求概率
w_c1_p = w_appear_sum_num / (spam_len + 2)
return w_c1_p
# 获取测试邮件中出现的 垃圾邮件特征
def get_X_c2(ham_w_dict,file_name):
# 过滤文本
translator = re.compile('[%s]' % re.escape(string.punctuation))
with open(file_name, 'r', encoding='utf-8') as f:
txt_str = f.read()
# 全部小写
txt_str = txt_str.lower()
# 过滤掉所有符号
txt_str = translator.sub(' ', txt_str)
# 过滤掉全部数字
txt_str = replace_num(txt_str)
# 把全体的邮件文本 根据换行符把string划分成列表
txt_str_list = txt_str.splitlines()
# 把获取的全体单词句子列表转成字符串
txt_str = ''.join(txt_str_list)
# 把句子分成词
email_words = txt_str.split(' ')
# 去重
x_set = set()
for word in email_words:
if word!='':
x_set.add(word)
# print(f'\ntest_x_set={x_set}')
# 判断测试邮件的词有哪些是垃圾邮件的特征
ham_X_num = []
for xi in x_set:
for wi in ham_w_dict:
if xi == wi:
ham_X_num.append(ham_w_dict[wi])
# print(f'\nham_X_num={ham_X_num}')
# 先求分子 所有词出现的总和
ham_len = len(os.listdir(f'./email/ham'))
w_appear_sum_num = 1
for num in ham_X_num:
w_appear_sum_num += num
# print(f'\nspam_w_appear_sum_num={w_appear_sum_num}')
# 求概率
w_c2_p = w_appear_sum_num / (ham_len+2)
return w_c2_p
def email_test(spam_w_dict,ham_w_dict):
for curDir, dirs, files in os.walk(f'./email/test'):
for file in files:
file_name = os.path.join(curDir, file)
print('---------------------------------------------------------------')
print(f'测试邮件: {file}')
# 获取条件概率 p(X|c1)
p_X_c1 = get_X_c1(spam_w_dict,file_name)
# 获取条件概率 p(X|c2)
p_X_c2 = get_X_c2(ham_w_dict,file_name)
# print(f'\nX_c1={p_X_c1}')
# print(f'\nX_c2={p_X_c2}')
# #注意:Log之后全部变为负数
A = np.log(p_X_c1) + np.log(1 / 2)
B = np.log(p_X_c2) + np.log(1 / 2)
# 除法会出现问题,-1 / 负分母 结果 < -2/同一个分母
print(f'p1={A},p2={B}')
# 因为分母一致,所以只比较 分子即可
if A > B:
print('p1>p2,所以是垃圾邮件.')
if A <= B:
print('p1)
if __name__=='__main__':
spam_email_list = get_filtered_str('spam')
ham_email_list = get_filtered_str('ham')
spam_w_dict = get_dict_spam_dict_w(spam_email_list)
ham_w_dict = get_dict_ham_dict_w(spam_email_list,ham_email_list)
# print(f'\n从垃圾邮件中提取的特征及每个特征出现的邮件数:')
# print(f'spam_w_dict={spam_w_dict}')
# print(f'\n普通邮件中垃圾邮件特征出现的邮件数为:')
# print(f'ham_w_dict={ham_w_dict}')
email_test(spam_w_dict, ham_w_dict)
数据集以及代码:
链接: https://pan.baidu.com/s/1cHBDd_M_B0vgUA6la6AK9Q?pwd=psk9
提取码:psk9