pandas和python标准库提供了一整套高级、灵活的、高效的核心函数和算法将数据规整化为你想要的形式!
本篇博客主要介绍:
合并数据集:.merge()、.concat()等方法,类似于SQL或其他关系型数据库的连接操作。
参数 | 说明 |
---|---|
left | 参与合并的左侧DataFrame |
right | 参与合并的右侧DataFrame |
how | 连接方式:‘inner’(默认);还有,‘outer’、‘left’、‘right’ |
on | 用于连接的列名,必须同时存在于左右两个DataFrame对象中,如果位指定,则以left和right列名的交集作为连接键 |
left_on | 左侧DataFarme中用作连接键的列 |
right_on | 右侧DataFarme中用作连接键的列 |
left_index | 将左侧的行索引用作其连接键 |
right_index | 将右侧的行索引用作其连接键 |
sort | 根据连接键对合并后的数据进行排序,默认为True。有时在处理大数据集时,禁用该选项可获得更好的性能 |
suffixes | 字符串值元组,用于追加到重叠列名的末尾,默认为(‘_x’,‘_y’).例如,左右两个DataFrame对象都有‘data’,则结果中就会出现‘data_x’,‘data_y’ |
copy | 设置为False,可以在某些特殊情况下避免将数据复制到结果数据结构中。默认总是赋值 |
1、多对一的合并(一个表的连接键列有重复值,另一个表中的连接键没有重复值)
-
import pandas
as pd
-
import numpy
as np
-
-
df1 = pd.DataFrame({
'key':[
'b',
'b',
'a',
'c',
'a',
'a',
'b'],
'data1': range(
7)})
-
-
df1
data1 | key | |
---|---|---|
0 | 0 | b |
1 | 1 | b |
2 | 2 | a |
3 | 3 | c |
4 | 4 | a |
5 | 5 | a |
6 | 6 | b |
-
df2 = pd.DataFrame({
'key':[
'a',
'b',
'd'],
'data2':range(
3)})
-
-
df2
data2 | key | |
---|---|---|
0 | 0 | a |
1 | 1 | b |
2 | 2 | d |
pd.merge(df1,df2)#默认情况
data1 | key | data2 | |
---|---|---|---|
0 | 0 | b | 1 |
1 | 1 | b | 1 |
2 | 6 | b | 1 |
3 | 2 | a | 0 |
4 | 4 | a | 0 |
5 | 5 | a | 0 |
df1.merge(df2)
data1 | key | data2 | |
---|---|---|---|
0 | 0 | b | 1 |
1 | 1 | b | 1 |
2 | 6 | b | 1 |
3 | 2 | a | 0 |
4 | 4 | a | 0 |
5 | 5 | a | 0 |
df1.merge(df2,on = 'key',how = 'inner')#内连接,取交集
data1 | key | data2 | |
---|---|---|---|
0 | 0 | b | 1 |
1 | 1 | b | 1 |
2 | 6 | b | 1 |
3 | 2 | a | 0 |
4 | 4 | a | 0 |
5 | 5 | a | 0 |
df1.merge(df2,on = 'key',how = 'outer')#外链接,取并集,并用nan填充
data1 | key | data2 | |
---|---|---|---|
0 | 0.0 | b | 1.0 |
1 | 1.0 | b | 1.0 |
2 | 6.0 | b | 1.0 |
3 | 2.0 | a | 0.0 |
4 | 4.0 | a | 0.0 |
5 | 5.0 | a | 0.0 |
6 | 3.0 | c | NaN |
7 | NaN | d | 2.0 |
df1.merge(df2,on = 'key',how = 'left')#左连接,左侧DataFrame取全部,右侧DataFrame取部分
data1 | key | data2 | |
---|---|---|---|
0 | 0 | b | 1.0 |
1 | 1 | b | 1.0 |
2 | 2 | a | 0.0 |
3 | 3 | c | NaN |
4 | 4 | a | 0.0 |
5 | 5 | a | 0.0 |
6 | 6 | b | 1.0 |
df1.merge(df2,on = 'key',how = 'right')#右连接,右侧DataFrame取全部,左侧DataFrame取部分
data1 | key | data2 | |
---|---|---|---|
0 | 0.0 | b | 1 |
1 | 1.0 | b | 1 |
2 | 6.0 | b | 1 |
3 | 2.0 | a | 0 |
4 | 4.0 | a | 0 |
5 | 5.0 | a | 0 |
6 | NaN | d | 2 |
如果左右侧DataFrame的连接键列名不一致,但是取值有重叠,可使用left_on、right_on来指定左右连接键
-
df3 = pd.DataFrame({
'lkey':[
'b',
'b',
'a',
'c',
'a',
'a',
'b'],
'data1': range(
7)})
-
-
df3
data1 | lkey | |
---|---|---|
0 | 0 | b |
1 | 1 | b |
2 | 2 | a |
3 | 3 | c |
4 | 4 | a |
5 | 5 | a |
6 | 6 | b |
-
df4 = pd.DataFrame({
'rkey':[
'a',
'b',
'd'],
'data2':range(
3)})
-
-
df4
data2 | rkey | |
---|---|---|
0 | 0 | a |
1 | 1 | b |
2 | 2 | d |
df3.merge(df4,left_on = 'lkey',right_on = 'rkey',how = 'inner')
data1 | lkey | data2 | rkey | |
---|---|---|---|---|
0 | 0 | b | 1 | b |
1 | 1 | b | 1 | b |
2 | 6 | b | 1 | b |
3 | 2 | a | 0 | a |
4 | 4 | a | 0 | a |
5 | 5 | a | 0 | a |
2、多对多的合并(一个表的连接键列有重复值,另一个表中的连接键有重复值)
-
df1 = pd.DataFrame({
'key':[
'b',
'b',
'a',
'c',
'a',
'a',
'b'],
'data1': range(
7)})
-
-
df1
data1 | key | |
---|---|---|
0 | 0 | b |
1 | 1 | b |
2 | 2 | a |
3 | 3 | c |
4 | 4 | a |
5 | 5 | a |
6 | 6 | b |
-
df5 = pd.DataFrame({
'key':[
'a',
'b',
'a',
'b',
'b'],
'data2': range(
5)})
-
df5
data2 | key | |
---|---|---|
0 | 0 | a |
1 | 1 | b |
2 | 2 | a |
3 | 3 | b |
4 | 4 | b |
df1.merge(df5)
data1 | key | data2 | |
---|---|---|---|
0 | 0 | b | 1 |
1 | 0 | b | 3 |
2 | 0 | b | 4 |
3 | 1 | b | 1 |
4 | 1 | b | 3 |
5 | 1 | b | 4 |
6 | 6 | b | 1 |
7 | 6 | b | 3 |
8 | 6 | b | 4 |
9 | 2 | a | 0 |
10 | 2 | a | 2 |
11 | 4 | a | 0 |
12 | 4 | a | 2 |
13 | 5 | a | 0 |
14 | 5 | a | 2 |
1)默认情况下,会将两个表中相同列名作为连接键
2)多对多,会采用笛卡尔积形式链接(左表连接键有三个值‘1,3,5’,右表有两个值‘2,3’,则会形成,(1,2)(1,3)(3,1),(3,2)。。。6种组合)
3)存在多个连接键的处理
-
left = pd.DataFrame({
'key1':[
'foo',
'foo',
'bar'],
'key2':[
'one',
'one',
'two'],
'lval':[
1,
2,
3]})
-
-
right = pd.DataFrame({
'key1':[
'foo',
'foo',
'bar',
'bar'],
'key2':[
'one',
'one',
'one',
'two'],
'rval':[
4,
5,
6,
7]})
left
key1 | key2 | lval | |
---|---|---|---|
0 | foo | one | 1 |
1 | foo | one | 2 |
2 | bar | two | 3 |
right
key1 | key2 | rval | |
---|---|---|---|
0 | foo | one | 4 |
1 | foo | one | 5 |
2 | bar | one | 6 |
3 | bar | two | 7 |
pd.merge(left,right,on = ['key1','key2'],how = 'outer')
key1 | key2 | lval | rval | |
---|---|---|---|---|
0 | foo | one | 1.0 | 4 |
1 | foo | one | 1.0 | 5 |
2 | foo | one | 2.0 | 4 |
3 | foo | one | 2.0 | 5 |
4 | bar | two | 3.0 | 7 |
5 | bar | one | NaN | 6 |
1)连接键是多对多关系,应执行笛卡尔积形式
2)多列应看连接键值对是否一致
4)对连接表中非连接列的重复列名的处理
pd.merge(left,right,on = 'key1')
key1 | key2_x | lval | key2_y | rval | |
---|---|---|---|---|---|
0 | foo | one | 1 | one | 4 |
1 | foo | one | 1 | one | 5 |
2 | foo | one | 2 | one | 4 |
3 | foo | one | 2 | one | 5 |
4 | bar | two | 3 | one | 6 |
5 | bar | two | 3 | two | 7 |
pd.merge(left,right,on = 'key1',suffixes = ('_left','_right'))
key1 | key2_left | lval | key2_right | rval | |
---|---|---|---|---|---|
0 | foo | one | 1 | one | 4 |
1 | foo | one | 1 | one | 5 |
2 | foo | one | 2 | one | 4 |
3 | foo | one | 2 | one | 5 |
4 | bar | two | 3 | one | 6 |
5 | bar | two | 3 | two | 7 |
当连接键位于索引中时,成为索引上的合并,可以通过merge函数,传入left_index、right_index来说明应该被索引的情况。
-
left1 = pd.DataFrame({
'key':[
'a',
'b',
'a',
'a',
'b',
'c'],
'value': range(
6)})
-
left1
key | value | |
---|---|---|
0 | a | 0 |
1 | b | 1 |
2 | a | 2 |
3 | a | 3 |
4 | b | 4 |
5 | c | 5 |
-
right1 = pd.DataFrame({
'group_val':[
3.5,
7]},index = [
'a',
'b'])
-
right1
group_val | |
---|---|
a | 3.5 |
b | 7.0 |
pd.merge(left1,right1,left_on = 'key',right_index = True)
key | value | group_val | |
---|---|---|---|
0 | a | 0 | 3.5 |
2 | a | 2 | 3.5 |
3 | a | 3 | 3.5 |
1 | b | 1 | 7.0 |
4 | b | 4 | 7.0 |
有上可知,left_on、right_on是指定表中非索引列为连接键,left_index、right_index是指定表中索引列为连接键,两者可以组合,是为了区分是否是索引列
-
left2 = pd.DataFrame(np.arange(
6).reshape(
3,
2),index = [
'a',
'b',
'e'],columns = [
'0hio',
'nevada'])
-
-
right2 = pd.DataFrame(np.arange(
7,
15).reshape(
4,
2),index = [
'b',
'c',
'd',
'e'],columns = [
'misso',
'ala'])
-
-
left2
0hio | nevada | |
---|---|---|
a | 0 | 1 |
b | 2 | 3 |
e | 4 | 5 |
right2
misso | ala | |
---|---|---|
b | 7 | 8 |
c | 9 | 10 |
d | 11 | 12 |
e | 13 | 14 |
pd.merge(left2,right2,left_index = True,right_index = True,how = 'outer')
0hio | nevada | misso | ala | |
---|---|---|---|---|
a | 0.0 | 1.0 | NaN | NaN |
b | 2.0 | 3.0 | 7.0 | 8.0 |
c | NaN | NaN | 9.0 | 10.0 |
d | NaN | NaN | 11.0 | 12.0 |
e | 4.0 | 5.0 | 13.0 | 14.0 |
在这里展示一种新的连接方法,对应于numpy的concatenate函数,pandas有concat函数
-
#numpy
-
arr =np.arange(
12).reshape(
3,
4)
arr
-
array(
[[ 0, 1, 2, 3],
-
[ 4, 5, 6, 7],
-
[ 8, 9, 10, 11]])
np.concatenate([arr,arr],axis = 1)#横轴连接块
-
array(
[[ 0, 1, 2, 3, 0, 1, 2, 3],
-
[ 4, 5, 6, 7, 4, 5, 6, 7],
-
[ 8, 9, 10, 11, 8, 9, 10, 11]])
参数 | 说明 |
---|---|
objs | 参与连接的列表或字典,且列表或字典里的对象是pandas数据类型,唯一必须给定的参数 |
axis=0 | 指明连接的轴向,0是纵轴,1是横轴,默认是0 |
join | ‘inner’(交集),‘outer’(并集),默认是‘outer’指明轴向索引的索引是交集还是并集 |
join_axis | 指明用于其他n-1条轴的索引(层次化索引,某个轴向有多个索引),不执行交并集 |
keys | 与连接对象有关的值,用于形成连接轴向上的层次化索引(外层索引),可以是任意值的列表或数组、元组数据、数组列表(如果将levels设置成多级数组的话) |
levels | 指定用作层次化索引各级别(内层索引)上的索引,如果设置keys的话 |
names | 用于创建分层级别的名称,如果设置keys或levels的话 |
verify_integrity | 检查结果对象新轴上的重复情况,如果发横则引发异常,默认False,允许重复 |
ignore_index | 不保留连接轴上的索引,产生一组新索引range(total_length) |
-
# 现将表构成list,然后在作为concat的输入
-
In [
4]: frames = [df1, df2, df3]
-
-
In [
5]: result = pd.concat(frames)
要在相接的时候在加上一个层次的key来识别数据源自于哪张表,可以增加key参数
In [6]: result = pd.concat(frames, keys=['x', 'y', 'z'])
效果如下
当axis = 1的时候,concat就是行对齐,然后将不同列名称的两张表合并
In [9]: result = pd.concat([df1, df4], axis=1)
加上join参数的属性,如果为’inner’得到的是两表的交集,如果是outer,得到的是两表的并集。
In [10]: result = pd.concat([df1, df4], axis=1, join='inner')
如果有join_axes的参数传入,可以指定根据那个轴来对齐数据
例如根据df1表对齐数据,就会保留指定的df1表的轴,然后将df4的表与之拼接
In [11]: result = pd.concat([df1, df4], axis=1, join_axes=[df1.index])
append是series和dataframe的方法,使用它就是默认沿着列进行凭借(axis = 0,列对齐)
In [12]: result = df1.append(df2)
如果两个表的index都没有实际含义,使用ignore_index参数,置true,合并的两个表就睡根据列字段对齐,然后合并。最后再重新整理一个新的index。
前面提到的keys参数可以用来给合并后的表增加key来区分不同的表数据来源
In [27]: result = pd.concat(frames, keys=['x', 'y', 'z'])
-
In [
28]: pieces = {
'x': df1,
'y': df2,
'z': df3}
-
-
In [
29]: result = pd
.concat(pieces)
append方法可以将 series 和 字典就够的数据作为dataframe的新一行插入。
-
In [
34]: s2 = pd.Series([
'X0',
'X1',
'X2',
'X3'],
index=[
'A',
'B',
'C',
'D'])
-
-
In [
35]:
result = df1.append(s2, ignore_index=
True)
如果遇到两张表的列字段本来就不一样,但又想将两个表合并,其中无效的值用nan来表示。那么可以使用ignore_index来实现。
-
In [
36]: dicts = [{
'A':
1,
'B':
2,
'C':
3,
'X':
4},
-
....: {
'A':
5,
'B':
6,
'C':
7,
'Y':
8}]
-
....:
-
-
In [
37]: result = df1.append(dicts, ignore_index=
True)
pandas和python标准库提供了一整套高级、灵活的、高效的核心函数和算法将数据规整化为你想要的形式!
本篇博客主要介绍:
合并数据集:.merge()、.concat()等方法,类似于SQL或其他关系型数据库的连接操作。
参数 | 说明 |
---|---|
left | 参与合并的左侧DataFrame |
right | 参与合并的右侧DataFrame |
how | 连接方式:‘inner’(默认);还有,‘outer’、‘left’、‘right’ |
on | 用于连接的列名,必须同时存在于左右两个DataFrame对象中,如果位指定,则以left和right列名的交集作为连接键 |
left_on | 左侧DataFarme中用作连接键的列 |
right_on | 右侧DataFarme中用作连接键的列 |
left_index | 将左侧的行索引用作其连接键 |
right_index | 将右侧的行索引用作其连接键 |
sort | 根据连接键对合并后的数据进行排序,默认为True。有时在处理大数据集时,禁用该选项可获得更好的性能 |
suffixes | 字符串值元组,用于追加到重叠列名的末尾,默认为(‘_x’,‘_y’).例如,左右两个DataFrame对象都有‘data’,则结果中就会出现‘data_x’,‘data_y’ |
copy | 设置为False,可以在某些特殊情况下避免将数据复制到结果数据结构中。默认总是赋值 |
1、多对一的合并(一个表的连接键列有重复值,另一个表中的连接键没有重复值)
-
import pandas
as pd
-
import numpy
as np
-
-
df1 = pd.DataFrame({
'key':[
'b',
'b',
'a',
'c',
'a',
'a',
'b'],
'data1': range(
7)})
-
-
df1
data1 | key | |
---|---|---|
0 | 0 | b |
1 | 1 | b |
2 | 2 | a |
3 | 3 | c |
4 | 4 | a |
5 | 5 | a |
6 | 6 | b |
-
df2 = pd.DataFrame({
'key':[
'a',
'b',
'd'],
'data2':range(
3)})
-
-
df2
data2 | key | |
---|---|---|
0 | 0 | a |
1 | 1 | b |
2 | 2 | d |
pd.merge(df1,df2)#默认情况
data1 | key | data2 | |
---|---|---|---|
0 | 0 | b | 1 |
1 | 1 | b | 1 |
2 | 6 | b | 1 |
3 | 2 | a | 0 |
4 | 4 | a | 0 |
5 | 5 | a | 0 |
df1.merge(df2)
data1 | key | data2 | |
---|---|---|---|
0 | 0 | b | 1 |
1 | 1 | b | 1 |
2 | 6 | b | 1 |
3 | 2 | a | 0 |
4 | 4 | a | 0 |
5 | 5 | a | 0 |
df1.merge(df2,on = 'key',how = 'inner')#内连接,取交集
data1 | key | data2 | |
---|---|---|---|
0 | 0 | b | 1 |
1 | 1 | b | 1 |
2 | 6 | b | 1 |
3 | 2 | a | 0 |
4 | 4 | a | 0 |
5 | 5 | a | 0 |
df1.merge(df2,on = 'key',how = 'outer')#外链接,取并集,并用nan填充
data1 | key | data2 | |
---|---|---|---|
0 | 0.0 | b | 1.0 |
1 | 1.0 | b | 1.0 |
2 | 6.0 | b | 1.0 |
3 | 2.0 | a | 0.0 |
4 | 4.0 | a | 0.0 |
5 | 5.0 | a | 0.0 |
6 | 3.0 | c | NaN |
7 | NaN | d | 2.0 |
df1.merge(df2,on = 'key',how = 'left')#左连接,左侧DataFrame取全部,右侧DataFrame取部分
data1 | key | data2 | |
---|---|---|---|
0 | 0 | b | 1.0 |
1 | 1 | b | 1.0 |
2 | 2 | a | 0.0 |
3 | 3 | c | NaN |
4 | 4 | a | 0.0 |
5 | 5 | a | 0.0 |
6 | 6 | b | 1.0 |
df1.merge(df2,on = 'key',how = 'right')#右连接,右侧DataFrame取全部,左侧DataFrame取部分
data1 | key | data2 | |
---|---|---|---|
0 | 0.0 | b | 1 |
1 | 1.0 | b | 1 |
2 | 6.0 | b | 1 |
3 | 2.0 | a | 0 |
4 | 4.0 | a | 0 |
5 | 5.0 | a | 0 |
6 | NaN | d | 2 |
如果左右侧DataFrame的连接键列名不一致,但是取值有重叠,可使用left_on、right_on来指定左右连接键
-
df3 = pd.DataFrame({
'lkey':[
'b',
'b',
'a',
'c',
'a',
'a',
'b'],
'data1': range(
7)})
-
-
df3
data1 | lkey | |
---|---|---|
0 | 0 | b |
1 | 1 | b |
2 | 2 | a |
3 | 3 | c |
4 | 4 | a |
5 | 5 | a |
6 | 6 | b |
-
df4 = pd.DataFrame({
'rkey':[
'a',
'b',
'd'],
'data2':range(
3)})
-
-
df4
data2 | rkey | |
---|---|---|
0 | 0 | a |
1 | 1 | b |
2 | 2 | d |
df3.merge(df4,left_on = 'lkey',right_on = 'rkey',how = 'inner')
data1 | lkey | data2 | rkey | |
---|---|---|---|---|
0 | 0 | b | 1 | b |
1 | 1 | b | 1 | b |
2 | 6 | b | 1 | b |
3 | 2 | a | 0 | a |
4 | 4 | a | 0 | a |
5 | 5 | a | 0 | a |
2、多对多的合并(一个表的连接键列有重复值,另一个表中的连接键有重复值)
-
df1 = pd.DataFrame({
'key':[
'b',
'b',
'a',
'c',
'a',
'a',
'b'],
'data1': range(
7)})
-
-
df1
data1 | key | |
---|---|---|
0 | 0 | b |
1 | 1 | b |
2 | 2 | a |
3 | 3 | c |
4 | 4 | a |
5 | 5 | a |
6 | 6 | b |
-
df5 = pd.DataFrame({
'key':[
'a',
'b',
'a',
'b',
'b'],
'data2': range(
5)})
-
df5
data2 | key | |
---|---|---|
0 | 0 | a |
1 | 1 | b |
2 | 2 | a |
3 | 3 | b |
4 | 4 | b |
df1.merge(df5)
data1 | key | data2 | |
---|---|---|---|
0 | 0 | b | 1 |
1 | 0 | b | 3 |
2 | 0 | b | 4 |
3 | 1 | b | 1 |
4 | 1 | b | 3 |
5 | 1 | b | 4 |
6 | 6 | b | 1 |
7 | 6 | b | 3 |
8 | 6 | b | 4 |
9 | 2 | a | 0 |
10 | 2 | a | 2 |
11 | 4 | a | 0 |
12 | 4 | a | 2 |
13 | 5 | a | 0 |
14 | 5 | a | 2 |
1)默认情况下,会将两个表中相同列名作为连接键
2)多对多,会采用笛卡尔积形式链接(左表连接键有三个值‘1,3,5’,右表有两个值‘2,3’,则会形成,(1,2)(1,3)(3,1),(3,2)。。。6种组合)
3)存在多个连接键的处理
-
left = pd.DataFrame({
'key1':[
'foo',
'foo',
'bar'],
'key2':[
'one',
'one',
'two'],
'lval':[
1,
2,
3]})
-
-
right = pd.DataFrame({
'key1':[
'foo',
'foo',
'bar',
'bar'],
'key2':[
'one',
'one',
'one',
'two'],
'rval':[
4,
5,
6,
7]})
left
key1 | key2 | lval | |
---|---|---|---|
0 | foo | one | 1 |
1 | foo | one | 2 |
2 | bar | two | 3 |
right
key1 | key2 | rval | |
---|---|---|---|
0 | foo | one | 4 |
1 | foo | one | 5 |
2 | bar | one | 6 |
3 | bar | two | 7 |
pd.merge(left,right,on = ['key1','key2'],how = 'outer')
key1 | key2 | lval | rval | |
---|---|---|---|---|
0 | foo | one | 1.0 | 4 |
1 | foo | one | 1.0 | 5 |
2 | foo | one | 2.0 | 4 |
3 | foo | one | 2.0 | 5 |
4 | bar | two | 3.0 | 7 |
5 | bar | one | NaN | 6 |
1)连接键是多对多关系,应执行笛卡尔积形式
2)多列应看连接键值对是否一致
4)对连接表中非连接列的重复列名的处理
pd.merge(left,right,on = 'key1')
key1 | key2_x | lval | key2_y | rval | |
---|---|---|---|---|---|
0 | foo | one | 1 | one | 4 |
1 | foo | one | 1 | one | 5 |
2 | foo | one | 2 | one | 4 |
3 | foo | one | 2 | one | 5 |
4 | bar | two | 3 | one | 6 |
5 | bar | two | 3 | two | 7 |
pd.merge(left,right,on = 'key1',suffixes = ('_left','_right'))
key1 | key2_left | lval | key2_right | rval | |
---|---|---|---|---|---|
0 | foo | one | 1 | one | 4 |
1 | foo | one | 1 | one | 5 |
2 | foo | one | 2 | one | 4 |
3 | foo | one | 2 | one | 5 |
4 | bar | two | 3 | one | 6 |
5 | bar | two | 3 | two | 7 |
当连接键位于索引中时,成为索引上的合并,可以通过merge函数,传入left_index、right_index来说明应该被索引的情况。
-
left1 = pd.DataFrame({
'key':[
'a',
'b',
'a',
'a',
'b',
'c'],
'value': range(
6)})
-
left1
key | value | |
---|---|---|
0 | a | 0 |
1 | b | 1 |
2 | a | 2 |
3 | a | 3 |
4 | b | 4 |
5 | c | 5 |
-
right1 = pd.DataFrame({
'group_val':[
3.5,
7]},index = [
'a',
'b'])
-
right1
group_val | |
---|---|
a | 3.5 |
b | 7.0 |
pd.merge(left1,right1,left_on = 'key',right_index = True)
key | value | group_val | |
---|---|---|---|
0 | a | 0 | 3.5 |
2 | a | 2 | 3.5 |
3 | a | 3 | 3.5 |
1 | b | 1 | 7.0 |
4 | b | 4 | 7.0 |
有上可知,left_on、right_on是指定表中非索引列为连接键,left_index、right_index是指定表中索引列为连接键,两者可以组合,是为了区分是否是索引列
-
left2 = pd.DataFrame(np.arange(
6).reshape(
3,
2),index = [
'a',
'b',
'e'],columns = [
'0hio',
'nevada'])
-
-
right2 = pd.DataFrame(np.arange(
7,
15).reshape(
4,
2),index = [
'b',
'c',
'd',
'e'],columns = [
'misso',
'ala'])
-
-
left2
0hio | nevada | |
---|---|---|
a | 0 | 1 |
b | 2 | 3 |
e | 4 | 5 |
right2
misso | ala | |
---|---|---|
b | 7 | 8 |
c | 9 | 10 |
d | 11 | 12 |
e | 13 | 14 |
pd.merge(left2,right2,left_index = True,right_index = True,how = 'outer')
0hio | nevada | misso | ala | |
---|---|---|---|---|
a | 0.0 | 1.0 | NaN | NaN |
b | 2.0 | 3.0 | 7.0 | 8.0 |
c | NaN | NaN | 9.0 | 10.0 |
d | NaN | NaN | 11.0 | 12.0 |
e | 4.0 | 5.0 | 13.0 | 14.0 |
在这里展示一种新的连接方法,对应于numpy的concatenate函数,pandas有concat函数
-
#numpy
-
arr =np.arange(
12).reshape(
3,
4)
arr
-
array(
[[ 0, 1, 2, 3],
-
[ 4, 5, 6, 7],
-
[ 8, 9, 10, 11]])
np.concatenate([arr,arr],axis = 1)#横轴连接块
-
array(
[[ 0, 1, 2, 3, 0, 1, 2, 3],
-
[ 4, 5, 6, 7, 4, 5, 6, 7],
-
[ 8, 9, 10, 11, 8, 9, 10, 11]])
参数 | 说明 |
---|---|
objs | 参与连接的列表或字典,且列表或字典里的对象是pandas数据类型,唯一必须给定的参数 |
axis=0 | 指明连接的轴向,0是纵轴,1是横轴,默认是0 |
join | ‘inner’(交集),‘outer’(并集),默认是‘outer’指明轴向索引的索引是交集还是并集 |
join_axis | 指明用于其他n-1条轴的索引(层次化索引,某个轴向有多个索引),不执行交并集 |
keys | 与连接对象有关的值,用于形成连接轴向上的层次化索引(外层索引),可以是任意值的列表或数组、元组数据、数组列表(如果将levels设置成多级数组的话) |
levels | 指定用作层次化索引各级别(内层索引)上的索引,如果设置keys的话 |
names | 用于创建分层级别的名称,如果设置keys或levels的话 |
verify_integrity | 检查结果对象新轴上的重复情况,如果发横则引发异常,默认False,允许重复 |
ignore_index | 不保留连接轴上的索引,产生一组新索引range(total_length) |
-
# 现将表构成list,然后在作为concat的输入
-
In [
4]: frames = [df1, df2, df3]
-
-
In [
5]: result = pd.concat(frames)
要在相接的时候在加上一个层次的key来识别数据源自于哪张表,可以增加key参数
In [6]: result = pd.concat(frames, keys=['x', 'y', 'z'])
效果如下
当axis = 1的时候,concat就是行对齐,然后将不同列名称的两张表合并
In [9]: result = pd.concat([df1, df4], axis=1)
加上join参数的属性,如果为’inner’得到的是两表的交集,如果是outer,得到的是两表的并集。
In [10]: result = pd.concat([df1, df4], axis=1, join='inner')
如果有join_axes的参数传入,可以指定根据那个轴来对齐数据
例如根据df1表对齐数据,就会保留指定的df1表的轴,然后将df4的表与之拼接
In [11]: result = pd.concat([df1, df4], axis=1, join_axes=[df1.index])
append是series和dataframe的方法,使用它就是默认沿着列进行凭借(axis = 0,列对齐)
In [12]: result = df1.append(df2)
如果两个表的index都没有实际含义,使用ignore_index参数,置true,合并的两个表就睡根据列字段对齐,然后合并。最后再重新整理一个新的index。
前面提到的keys参数可以用来给合并后的表增加key来区分不同的表数据来源
In [27]: result = pd.concat(frames, keys=['x', 'y', 'z'])
-
In [
28]: pieces = {
'x': df1,
'y': df2,
'z': df3}
-
-
In [
29]: result = pd
.concat(pieces)
append方法可以将 series 和 字典就够的数据作为dataframe的新一行插入。
-
In [
34]: s2 = pd.Series([
'X0',
'X1',
'X2',
'X3'],
index=[
'A',
'B',
'C',
'D'])
-
-
In [
35]:
result = df1.append(s2, ignore_index=
True)
如果遇到两张表的列字段本来就不一样,但又想将两个表合并,其中无效的值用nan来表示。那么可以使用ignore_index来实现。
-
In [
36]: dicts = [{
'A':
1,
'B':
2,
'C':
3,
'X':
4},
-
....: {
'A':
5,
'B':
6,
'C':
7,
'Y':
8}]
-
....:
-
-
In [
37]: result = df1.append(dicts, ignore_index=
True)