- 视觉算法之卷积神经网络
清风AI
深度学习算法详解及代码复现计算机视觉cnn神经网络深度学习python课程设计毕业设计
定义与特点卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种专为处理具有网格结构的数据而设计的深度学习模型。其独特的结构和功能使其在图像处理、语音识别等领域展现出卓越的性能:CNN的核心设计理念源于对生物视觉系统的模仿。通过模拟大脑皮层中视网膜和视觉皮层的层次化结构,CNN能够有效地捕捉图像中的局部特征并逐步抽象为高层语义信息。这种设计使得CNN特别擅长处理图像和音
- 基于FPGA的二维FFT实现
廉连曼
基于FPGA的二维FFT实现【下载地址】基于FPGA的二维FFT实现本项目提供了一种基于FPGA的高效二维FFT实现方案,专为数字信号处理和图像处理领域设计。通过并行使用两个一维FFT单元,本方案显著提升了二维FFT变换的计算效率,并基于Xilinx的FFTIP核,确保易于集成到其他FPGA设计中。该方案适用于各类频谱分析场景,尤其适合图像处理系统。经过Verilog编程和Modelsim仿真测试
- 基于FPGA的快速傅里叶变换(FFT)设计在嵌入式系统中的应用
风吹麦很
fpga开发嵌入式
基于FPGA的快速傅里叶变换(FFT)设计在嵌入式系统中的应用快速傅里叶变换(FastFourierTransform,FFT)是一种重要的信号处理算法,在许多领域中都得到广泛的应用,例如通信系统、雷达技术、图像处理等。为了提高FFT的计算性能和实时性,将其设计为硬件加速器常常是一个明智的选择。本文将介绍基于现场可编程门阵列(Field-ProgrammableGateArray,FPGA)的FF
- OpenCvSharp 实现环形文字识别OCR实例(C#)
XisVisual_Basic
ocrc#计算机视觉C#
近年来,随着计算机视觉和图像处理的不断发展,光学字符识别(OCR)技术也变得愈发成熟。OCR技术可以将图像中的文字转换为可编辑和可搜索的文本,为人们带来了极大的便利。在本篇文章中,我们将介绍如何使用OpenCvSharp库来实现环形文字的识别。首先,在使用OpenCvSharp之前,我们需要确保已经在项目中引用了该库,并添加相应的命名空间。usingOpenCvSharp;接下来,我们需要准备一张
- 基于小样本的高光谱图像分类任务:CMFSL方法及Python实现
pk_xz123456
仿真模型算法深度学习分类python人工智能深度学习机器学习
基于小样本的高光谱图像分类任务:CMFSL方法及Python实现1.引言高光谱图像分类是遥感图像处理领域的重要研究方向,它在农业监测、环境评估、军事侦察等领域有着广泛的应用。与传统RGB图像不同,高光谱图像包含数百个连续的光谱波段,能够提供丰富的光谱信息。然而,高光谱图像分类面临着维度灾难、样本获取困难等挑战,特别是在小样本条件下,传统分类方法往往表现不佳。针对这一问题,本文介绍一种基于小样本的高
- 位运算符详解
在C语言中,位运算符(BitwiseOperators)用于对整数类型(如int,unsignedint,long,char等)的二进制位进行操作。这些操作比算术运算更底层,常用于嵌入式开发、驱动开发、图像处理、网络协议、加密等场景。下面是C语言中所有的位运算符及其详解:一、位运算符列表运算符名称功能说明&位与(AND)两个二进制位都为1,结果才为1``位或(OR)^位异或(XOR)两个二进制位不
- FDMA读写AXI BRAM交互:FPGA高速数据传输的核心技术
芯作者
D1:ZYNQ设计fpga开发
在图像处理系统中,当1080P视频流以每秒60帧的速度传输时,传统DMA每帧会浪费27%的带宽在地址管理上——而FDMA技术能将这些损失降至3%以内现代FPGA系统中,高效数据搬运往往是性能瓶颈的关键所在。当你在手机上流畅播放4K视频、在自动驾驶系统中实时处理激光雷达点云时,背后都依赖于FDMA(FlexibleDirectMemoryAccess)与AXIBRAM的高效交互技术。本文将深入探讨这
- NumPy:科学计算的超能引擎[特殊字符](深入剖析+实战技巧)
码海漫游者8
numpy其他
文章目录为什么NumPy是Python科学计算的绝对核心?三维痛点直击ndarray:NumPy的核武器剖析内存布局揭秘(超级重要‼️)维度操作黑科技广播机制(Broadcasting)性能屠杀现场️高级技巧武装包️内存映射大文件爱因斯坦求和约定结构化数组真实世界应用场景图像处理机器学习数据预处理踩坑预警⚠️视图vs副本整数溢出性能压榨终极指南避免复制四法则终极加速方案你知道吗?就在你刷短视频的几
- opencv初步学习——图像处理2
这一部分主要讲解如何初步地创建一个图像,以及彩色图像我们的一些基本处理方法一、创建一个灰度图像1-1、zeros()函数[NumPy库]要用到这一个函数,首先我们需要调用我们的NumPy库,这一个函数的作用是可以帮助我们生成一个元素值都是0的二维数组,如果我们把这些数据放到一张图片里面去,那么就对应着我们的一个黑色图像。当然我们也可以通过修改数组中的数字大小来改变图像的颜色(但还是灰度图像)(1)
- 20.XLD轮廓
Echo``
Halcon系统化学习计算机视觉人工智能算法
目录1.xld概念2.画轮廓3.区域转轮廓4.边缘提取算子5.xld特征提取6.提取任意线条7.提取最长的线条8.xld分割10.xld合并11.xld拟合12.xld几何变换13.xld变换14.xld集合运算15.区域和轮廓精度16.轮廓的保存读取17.halcon操作CAD文件18.轮廓测量算子19.同心度计算1.xld概念*图像处理*1.处理对象HObject*1.图像-image*2.区
- 图像分割技术详解:从原理到实践
lanjieying
本文还有配套的精品资源,点击获取简介:图像分割是图像处理领域将图像分解为多个区域的过程,用于图像分析、特征提取等。文章介绍了图像分割的原理,并通过一个将图像划分为2*4子块的示例,展示了如何使用Python和matplotlib库中的tight_subplot函数进行图像分割和展示。文章还探讨了图像分割在不同领域的应用,以及如何在机器学习项目中作为数据预处理步骤。1.图像分割基本概念在图像处理领域
- Pillow 安装使用教程
小奇JAVA面试
安装使用教程pillowmicrosoft深度学习
一、Pillow简介Pillow是Python图像处理库PIL(PythonImagingLibrary)的友好分支,是图像处理的事实标准。它支持打开、编辑、转换、保存多种图像格式,常用于图像批量处理、验证码识别、缩略图生成等应用场景。二、安装Pillow2.1使用pip安装(推荐)pipinstallPillow2.2验证安装importPILprint(PIL.__version__)若无报错
- Coze智能体开发:如何批量生成和处理图片
王国平
CozeAIAgent智能体开发语言模型人工智能开发语言智能体Agent
在绘本制作、图片后期制作等场景中,往往需要使用模型来批量生成和处理图片。扣子提供了多个图像处理类节点,支持图像生成、添加水印、画质优化等多种常见的图片处理方式,你可以在批处理节点中嵌套图像生成等图像处理节点,实现图片的批量操作。本文档以绘本制作工作流为例,演示如何通过批处理节点和图像节点实现图像的批量生成和批量处理。效果演示通过绘本制作工作流,你可以批量生成类似以下风格的图片。搭建过程中你也可以根
- OpenCV教程——图像模糊。均值模糊,高斯模糊,中值模糊,双边模糊,高斯分布
1.图像模糊图像模糊是图像处理中最简单和常用的操作之一。⚠️使用该操作的原因之一是为了给图像预处理时降低噪声。图像模糊操作背后是数学的卷积计算。卷积操作的原理:常用的图像模糊的方法:均值模糊高斯模糊中值模糊双边模糊这四种模糊方式有时也被称为:均值滤波、高斯滤波、中值滤波和双边滤波。因为模糊属于一种滤波操作,具体关系可参照下图:其中,均值滤波、高斯滤波和中值滤波属于线性滤波;而双边滤波属于非线性滤波
- 线性代数在图像处理中的应用 --- 纳尼? 2D的高斯核可以通过1D的高斯核直接生成?(秩为1的矩阵)
松下J27
LinearAlgebra线性代数图像处理人工智能
二维高斯核,Rank秩等于一的矩阵之前,我在学习图像处理的时候,会经常用到Gaussianblur,也就是二维高斯低通滤波。当时用的都是Matlab中,现成的图像处理库。只需要输入sigma和kernelsize这些参数就行了,完全不需要考虑高斯核中的每个点长啥样。虽然教科书里面也会有一些配图,例如:直到后来,我学习高斯图像金字塔的时候发现,在别人的代码里面,他在生成二维高斯核的时候,并不是直接写
- Apple SoC 图像 ISP 与 Neural Engine 联合优化案例分析:性能与质量平衡的实战经验
观熵
影像技术全景图谱:架构调优与实战接口隔离原则影像Camera
AppleSoC图像ISP与NeuralEngine联合优化案例分析:性能与质量平衡的实战经验关键词:AppleSoC、ISP优化、NeuralEngine协同、图像处理性能、DeepFusion、SmartHDR、实时推理、多核异构计算、功耗管理摘要:随着图像计算复杂度的不断提升,AppleSoC中的ISP与NeuralEngine(NE)联合优化成为提升拍照性能和图像质量的关键路径。本文结合最
- Chapter6: ISP架构和处理模块-之-ISP模块
ifuleyou1668
CameraQCandroid
高通(Qualcomm)图像信号处理器(ISP)是摄像头系统中的核心组件,用于实时处理从摄像头传感器获取的图像数据。高通ISP包含多个模块,每个模块负责一部分图像处理任务。以下是高通CameraISP中常见的一些关键模块:1.RawDataInputInterfaceSensorInterface:接受来自摄像头传感器的原始数据,一般通过MIPICSI-2接口。2.LensShadingCorre
- 内嵌式触摸显示器在工业视觉设备中的应用
Jwest2021
计算机外设
内嵌式触摸显示器在工业视觉设备中的应用日益广泛,其重要性不容忽视。以下是对内嵌式触摸显示器在工业视觉设备中应用的具体分析:一、应用背景工业视觉设备是智能制造的重要组成部分,它依赖于先进的图像处理和机器视觉技术,实现对生产线上产品质量的自动化检测和控制。随着工业4.0和智能制造的推进,工业视觉设备在生产线上的作用愈发关键。而内嵌式触摸显示器作为人机交互的重要界面,为工业视觉设备提供了直观、便捷的操作
- 用Python解锁图像处理之力:从基础到智能应用的深度探索
熊猫钓鱼>_>
python图像处理开发语言
在像素构成的数字世界里,Python已成为解码图像奥秘的核心引擎。一、为何选择Python处理图像?超越工具的本质思考当人们谈论图像处理时,往往会陷入工具对比的漩涡(PythonvsMATLABvsC++)。但Python的真正价值在于其构建的完整生态闭环:科学计算基石:NumPy的ndarray结构完美对应图像的多维矩阵本质算法实现自由:从传统算子到深度学习模型的无缝衔接可视化即战力:Matpl
- 验证码破解的可能与不可能:用Python处理图片验证码的原理与限制
程序员威哥
python开发语言
前言验证码(CAPTCHA)是当前互联网防护机制中的重要组成部分,用于区分真人与自动程序。近年来,随着自动化技术发展,验证码破解成为自动化测试、爬虫及安全研究领域的热点。然而,从技术层面来看,验证码破解既有可行之处,也存在根本限制。本文将结合Python图像处理与机器学习技术,深度剖析图片验证码破解的原理、实践与瓶颈。一、验证码的分类及破解难点1.验证码类型字符型验证码纯数字、字母或混合,最常见。
- 数字图像处理学习笔记
andwhataboutit?
学习笔记
1-图像处理基础_哔哩哔哩_bilibili输出图像像素点需要将图象值要作类型转换,转成Int图像仿射变换线性变换+平移线性变换:1,变换前直线,变换后仍然直线2,直线比例不变3,直线到远点的距离不变仿射变换计算:常见变换:恒等变换:变换前后一致尺度变换:对尺寸作放大或缩小旋转变换:图像旋转但是尺寸不变平移::位置移动尺寸不变偏移(垂直、水平):垂直或者水平方向变化代码示例:importcv2im
- 数字图像处理第二次实验
愚戏师
数字图像处理python图像处理
实验三技术点分析根据实验要求,需要实现以下图像空间域滤波技术:噪声生成:高斯噪声椒盐噪声空间域滤波:均值滤波(3×3,5×5,7×7)中值滤波(3×3,5×5,7×7)最大值滤波最小值滤波图像处理流程:读取原始图像添加噪声(高斯/椒盐)应用各种滤波器可视化对比结果完整示例代码importcv2importnumpyasnpimportmatplotlib.pyplotaspltfrommatplo
- FPGA实现JPEG编码器的完整项目指南
本文还有配套的精品资源,点击获取简介:JPEG编码是一种广泛使用的数字图像压缩技术,通过在FPGA上实现该编码器,可以为嵌入式系统提供高效的图像处理。FPGA的可编程逻辑单元使其成为实现JPEG编码的理想平台。实现过程包括颜色空间转换、分块、离散余弦变换(DCT)、量化和熵编码等关键步骤。此外,testbench仿真用于验证设计的功能和性能,而资源优化确保了设计的高效性和低功耗。该实现过程需要深入
- python 中值滤波
search7
python
中值滤波是数字信号处理和数字图像处理领域使用较多的预处理技术,使用邻域内所有信号的中位数替换中心像素的值,可以在滤除异常值的情况下较好地保留纹理信息。该技术会在一定程度上造成图像模糊和失真,滤波窗口变大时会非常明显。importnumpyasnpfromPILimportImageimportscipy.signalassignalim=Image.open('lena.jpg')data=[]w
- 蚁群算法原理与应用详解
本文还有配套的精品资源,点击获取简介:蚁群算法是一种基于蚂蚁寻找食物路径行为的优化算法,它能够有效解决包括旅行商问题、网络路由和多目标优化在内的复杂问题。该算法模拟蚂蚁释放信息素来找到最短路径的过程,通过模拟蚂蚁的行为,算法逐步优化选择路径。蚁群算法具有并行性和全局优化能力,但也面临早熟收敛和参数调整的挑战。它已成功应用于物流优化、通信网络、任务调度、机器学习、图像处理和生物医学等众多领域。1.蚁
- Python 开发证件照抠图程序:从零到完整应用
winfredzhang
pythonregm证件照背景图颜色
在这个数字化时代,证件照的需求无处不在——求职简历、证件申请、网站注册等都需要规范的证件照。传统的方法是去照相馆拍摄或使用复杂的图像处理软件,但作为程序员,我们可以开发一个简单易用的证件照抠图工具。本文将详细介绍如何使用Python的wxPython框架和AI抠图技术,开发一个功能完整的证件照处理程序。C:\pythoncode\new\compressedjpeg30times.py项目概述我们
- 从0到1掌握OpenCV!Python图像处理实战全解析(附代码+案例)
小张在编程
Python学习opencvpython图像处理
引言你有没有想过,手机里的美颜滤镜如何精准识别五官?监控摄像头如何在人流中锁定可疑目标?医学影像软件如何从CT片中快速标注病灶?这些“神奇操作”的背后,往往藏着一个低调的“图像处理神器”——OpenCV。作为Python生态中最受欢迎的计算机视觉库,它用一行行代码将抽象的像素点变成可操作的“数字画布”。今天,我们就从最基础的图像读写开始,手把手带你解锁OpenCV的“十八般武艺”,从图像处理小白变
- 2025系统架构师---管道/过滤器架构风格
喜欢猪猪
java开发语言
引言在分布式系统与数据密集型应用主导技术演进的今天,管道/过滤器架构风格(PipesandFiltersArchitectureStyle)凭借其数据流驱动、组件解耦与并行处理能力,成为处理复杂数据转换任务的核心范式。从Unix命令行工具到实时金融交易引擎,从图像处理流水线到物联网边缘计算,管道/过滤器架构通过将系统拆分为独立处理单元(过滤器)与数据传递通道(管道),实现了功能模块
- Python机器学习实战——逻辑回归(附完整代码和结果)
小白熊XBX
机器学习机器学习python逻辑回归
Python机器学习实战——逻辑回归(附完整代码和结果)关于作者作者:小白熊作者简介:精通c#、Halcon、Python、Matlab,擅长机器视觉、机器学习、深度学习、数字图像处理、工业检测识别定位、用户界面设计、目标检测、图像分类、姿态识别、人脸识别、语义分割、路径规划、智能优化算法、大数据分析、各类算法融合创新等等。联系邮箱:
[email protected]科研辅导、知识付费答疑、个性化定制
- MATLAB骨架化形态学运算专题详解
本文还有配套的精品资源,点击获取简介:骨架化是一种减少图像复杂度、提取主要结构的技术,在MATLAB中通过bwmorph函数进行。本专题涵盖了骨架化的基本原理、相关函数、实际应用以及如何通过形态学操作如膨胀、腐蚀、开闭运算来优化结果。骨架化在医学图像分析、工业检测和生物图像分析等领域有广泛应用。掌握骨架化技术有助于提升图像处理的效率和准确性。1.骨架化概念与重要性1.1骨架化的定义与基本概念在数字
- apache ftpserver-CentOS config
gengzg
apache
<server xmlns="http://mina.apache.org/ftpserver/spring/v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://mina.apache.o
- 优化MySQL数据库性能的八种方法
AILIKES
sqlmysql
1、选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的 性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很
- JeeSite 企业信息化快速开发平台
Kai_Ge
JeeSite
JeeSite 企业信息化快速开发平台
平台简介
JeeSite是基于多个优秀的开源项目,高度整合封装而成的高效,高性能,强安全性的开源Java EE快速开发平台。
JeeSite本身是以Spring Framework为核心容器,Spring MVC为模型视图控制器,MyBatis为数据访问层, Apache Shiro为权限授权层,Ehcahe对常用数据进行缓存,Activit为工作流
- 通过Spring Mail Api发送邮件
120153216
邮件main
原文地址:http://www.open-open.com/lib/view/open1346857871615.html
使用Java Mail API来发送邮件也很容易实现,但是最近公司一个同事封装的邮件API实在让我无法接受,于是便打算改用Spring Mail API来发送邮件,顺便记录下这篇文章。 【Spring Mail API】
Spring Mail API都在org.spri
- Pysvn 程序员使用指南
2002wmj
SVN
源文件:http://ju.outofmemory.cn/entry/35762
这是一篇关于pysvn模块的指南.
完整和详细的API请参考 http://pysvn.tigris.org/docs/pysvn_prog_ref.html.
pysvn是操作Subversion版本控制的Python接口模块. 这个API接口可以管理一个工作副本, 查询档案库, 和同步两个.
该
- 在SQLSERVER中查找被阻塞和正在被阻塞的SQL
357029540
SQL Server
SELECT R.session_id AS BlockedSessionID ,
S.session_id AS BlockingSessionID ,
Q1.text AS Block
- Intent 常用的用法备忘
7454103
.netandroidGoogleBlogF#
Intent
应该算是Android中特有的东西。你可以在Intent中指定程序 要执行的动作(比如:view,edit,dial),以及程序执行到该动作时所需要的资料 。都指定好后,只要调用startActivity(),Android系统 会自动寻找最符合你指定要求的应用 程序,并执行该程序。
下面列出几种Intent 的用法
显示网页:
- Spring定时器时间配置
adminjun
spring时间配置定时器
红圈中的值由6个数字组成,中间用空格分隔。第一个数字表示定时任务执行时间的秒,第二个数字表示分钟,第三个数字表示小时,后面三个数字表示日,月,年,< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" />
测试的时候,由于是每天定时执行,所以后面三个数
- POJ 2421 Constructing Roads 最小生成树
aijuans
最小生成树
来源:http://poj.org/problem?id=2421
题意:还是给你n个点,然后求最小生成树。特殊之处在于有一些点之间已经连上了边。
思路:对于已经有边的点,特殊标记一下,加边的时候把这些边的权值赋值为0即可。这样就可以既保证这些边一定存在,又保证了所求的结果正确。
代码:
#include <iostream>
#include <cstdio>
- 重构笔记——提取方法(Extract Method)
ayaoxinchao
java重构提炼函数局部变量提取方法
提取方法(Extract Method)是最常用的重构手法之一。当看到一个方法过长或者方法很难让人理解其意图的时候,这时候就可以用提取方法这种重构手法。
下面是我学习这个重构手法的笔记:
提取方法看起来好像仅仅是将被提取方法中的一段代码,放到目标方法中。其实,当方法足够复杂的时候,提取方法也会变得复杂。当然,如果提取方法这种重构手法无法进行时,就可能需要选择其他
- 为UILabel添加点击事件
bewithme
UILabel
默认情况下UILabel是不支持点击事件的,网上查了查居然没有一个是完整的答案,现在我提供一个完整的代码。
UILabel *l = [[UILabel alloc] initWithFrame:CGRectMake(60, 0, listV.frame.size.width - 60, listV.frame.size.height)]
- NoSQL数据库之Redis数据库管理(PHP-REDIS实例)
bijian1013
redis数据库NoSQL
一.redis.php
<?php
//实例化
$redis = new Redis();
//连接服务器
$redis->connect("localhost");
//授权
$redis->auth("lamplijie");
//相关操
- SecureCRT使用备注
bingyingao
secureCRT每页行数
SecureCRT日志和卷屏行数设置
一、使用securecrt时,设置自动日志记录功能。
1、在C:\Program Files\SecureCRT\下新建一个文件夹(也就是你的CRT可执行文件的路径),命名为Logs;
2、点击Options -> Global Options -> Default Session -> Edite Default Sett
- 【Scala九】Scala核心三:泛型
bit1129
scala
泛型类
package spark.examples.scala.generics
class GenericClass[K, V](val k: K, val v: V) {
def print() {
println(k + "," + v)
}
}
object GenericClass {
def main(args: Arr
- 素数与音乐
bookjovi
素数数学haskell
由于一直在看haskell,不可避免的接触到了很多数学知识,其中数论最多,如素数,斐波那契数列等,很多在学生时代无法理解的数学现在似乎也能领悟到那么一点。
闲暇之余,从图书馆找了<<The music of primes>>和<<世界数学通史>>读了几遍。其中素数的音乐这本书与软件界熟知的&l
- Java-Collections Framework学习与总结-IdentityHashMap
BrokenDreams
Collections
这篇总结一下java.util.IdentityHashMap。从类名上可以猜到,这个类本质应该还是一个散列表,只是前面有Identity修饰,是一种特殊的HashMap。
简单的说,IdentityHashMap和HashM
- 读《研磨设计模式》-代码笔记-享元模式-Flyweight
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java
- PS人像润饰&调色教程集锦
cherishLC
PS
1、仿制图章沿轮廓润饰——柔化图像,凸显轮廓
http://www.howzhi.com/course/retouching/
新建一个透明图层,使用仿制图章不断Alt+鼠标左键选点,设置透明度为21%,大小为修饰区域的1/3左右(比如胳膊宽度的1/3),再沿纹理方向(比如胳膊方向)进行修饰。
所有修饰完成后,对该润饰图层添加噪声,噪声大小应该和
- 更新多个字段的UPDATE语句
crabdave
update
更新多个字段的UPDATE语句
update tableA a
set (a.v1, a.v2, a.v3, a.v4) = --使用括号确定更新的字段范围
- hive实例讲解实现in和not in子句
daizj
hivenot inin
本文转自:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842855.html
当前hive不支持 in或not in 中包含查询子句的语法,所以只能通过left join实现。
假设有一个登陆表login(当天登陆记录,只有一个uid),和一个用户注册表regusers(当天注册用户,字段只有一个uid),这两个表都包含
- 一道24点的10+种非人类解法(2,3,10,10)
dsjt
算法
这是人类算24点的方法?!!!
事件缘由:今天晚上突然看到一条24点状态,当时惊为天人,这NM叫人啊?以下是那条状态
朱明西 : 24点,算2 3 10 10,我LX炮狗等面对四张牌痛不欲生,结果跑跑同学扫了一眼说,算出来了,2的10次方减10的3次方。。我草这是人类的算24点啊。。
然后么。。。我就在深夜很得瑟的问室友求室友算
刚出完题,文哥的暴走之旅开始了
5秒后
- 关于YII的菜单插件 CMenu和面包末breadcrumbs路径管理插件的一些使用问题
dcj3sjt126com
yiiframework
在使用 YIi的路径管理工具时,发现了一个问题。 <?php  
- 对象与关系之间的矛盾:“阻抗失配”效应[转]
come_for_dream
对象
概述
“阻抗失配”这一词组通常用来描述面向对象应用向传统的关系数据库(RDBMS)存放数据时所遇到的数据表述不一致问题。C++程序员已经被这个问题困扰了好多年,而现在的Java程序员和其它面向对象开发人员也对这个问题深感头痛。
“阻抗失配”产生的原因是因为对象模型与关系模型之间缺乏固有的亲合力。“阻抗失配”所带来的问题包括:类的层次关系必须绑定为关系模式(将对象
- 学习编程那点事
gcq511120594
编程互联网
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- Reverse Linked List II
hcx2013
list
Reverse a linked list from position m to n. Do it in-place and in one-pass.
For example:Given 1->2->3->4->5->NULL, m = 2 and n = 4,
return 
- Spring4.1新特性——页面自动化测试框架Spring MVC Test HtmlUnit简介
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Hadoop集群工具distcp
liyonghui160com
1. 环境描述
两个集群:rock 和 stone
rock无kerberos权限认证,stone有要求认证。
1. 从rock复制到stone,采用hdfs
Hadoop distcp -i hdfs://rock-nn:8020/user/cxz/input hdfs://stone-nn:8020/user/cxz/运行在rock端,即源端问题:报版本
- 一个备份MySQL数据库的简单Shell脚本
pda158
mysql脚本
主脚本(用于备份mysql数据库): 该Shell脚本可以自动备份
数据库。只要复制粘贴本脚本到文本编辑器中,输入数据库用户名、密码以及数据库名即可。我备份数据库使用的是mysqlump 命令。后面会对每行脚本命令进行说明。
1. 分别建立目录“backup”和“oldbackup” #mkdir /backup #mkdir /oldbackup
- 300个涵盖IT各方面的免费资源(中)——设计与编码篇
shoothao
IT资源图标库图片库色彩板字体
A. 免费的设计资源
Freebbble:来自于Dribbble的免费的高质量作品。
Dribbble:Dribbble上“免费”的搜索结果——这是巨大的宝藏。
Graphic Burger:每个像素点都做得很细的绝佳的设计资源。
Pixel Buddha:免费和优质资源的专业社区。
Premium Pixels:为那些有创意的人提供免费的素材。
- thrift总结 - 跨语言服务开发
uule
thrift
官网
官网JAVA例子
thrift入门介绍
IBM-Apache Thrift - 可伸缩的跨语言服务开发框架
Thrift入门及Java实例演示
thrift的使用介绍
RPC
POM:
<dependency>
<groupId>org.apache.thrift</groupId>