https://zhuanlan.zhihu.com/p/358582762
https://e.qq.com/ads/adfaq/delivery/tool/08/
https://morketing.com/detail/4704
https://mp.weixin.qq.com/s/FOVggFduHKeDr3jidcmqgA
基本是综述论文翻译一遍
https://mp.weixin.qq.com/s/WU1iILMFdH3RZAbJKFU4WA
树分裂的部分讲的比较详细,方便理解
https://yao-lab.github.io/2009.fall.pku/lecture10_DingP_causal091101.pdf
http://proceedings.mlr.press/v67/gutierrez17a.html
综述论文,很经典
https://arxiv.org/abs/2002.02770
综述论文,比较新
http://ama.imag.fr/~amini/Publis/large-scale-benchmark.pdf
数据集,有AUUC和Qini的具体公式,注意和前面的综述不太一致
https://arxiv.org/abs/1706.03461
X-Learner,有S-Learner和T-Learner的介绍
https://arxiv.org/abs/1712.04912
R-Learner
https://arxiv.org/abs/2005.03447
特征筛选方法
https://arxiv.org/abs/1906.02120
DragonNet
https://link.springer.com/article/10.1007/s10115-011-0434-0
UpliftTree
http://bayes.acs.unt.edu:8083/BayesContent/class/rich/articles/Estimation_And_Inference_Of_Heterogeneous_Treatment_Effects_Using_Random_Forests.pdf
CausalForest
https://arxiv.org/abs/1705.08492
CTS,一种tree-based的方法
https://arxiv.org/abs/2008.06293
一个发券应用,据说可以只用正样本就可以
https://causalml.readthedocs.io/en/latest/about.html
Uber开源的一个包,实现了Meta-Learner和Tree-based方法、特征筛选、评估
https://microsoft.github.io/dowhy/readme.html
微软的,没用过,看着还比较全
https://www.coursera.org/learn/crash-course-in-causality/home/week/1
入门款
https://github.com/rguo12/awesome-causality-algorithms
一个汇总资源的github
https://www.bilibili.com/video/BV1sJ41177sg
B站,一个up对Causal Inference in Statistics: A Primer的解说,连载中
https://www.bradyneal.com/causal-inference-course
一个大佬的因果推断课程